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PREFACE

THIS BOCOK is a complete rewriting of the author's Elements of
Trigonometry. The direct approach to the various topics has been
maintained, but the explanations have been amplified and much
more use is made of illustrative worked examples. Great care has
been taken to make these examples instructive and to serve as pat-
terns for the problem work of the student. Many elementary
exercises and problems of current interest have been added.

The drill problems and the applications cover a sufficient range
to give the student in technical courses a working knowledge of
trigonometry as a tool subject.

Among the applications of plane trigonometry those relating to
mensuration have received full treatment, as also the subjects of
vectors, plane surveying and plane sailing. A treatment of the
mil unit of angle and its applications is given along with a brief
table of the functions at intervals of 40 mils.

The ideas of inverse functions and of trigonometric equations
are introduced early and later amplified in a separate chapter.

The subject of spherical trigonometry is treated in two chapters.
In the first of these the formulas are derived and applied to the so-
lution of spherical triangles; the second is devoted to applications,
principally in navigation and nautical astronomy. Considerable
attention is given to the use of the haversine and a four-place table
is provided so that the student may become familiar with the use of
this important function.

The subject of great circle sailing, including the ** vertex method,”
the construction and use of the Mercator chart, and the basic
problems of nautical astronomy have received careful attention.

For a brief course, or where more time is desired for spherical
trigonometry, the following curtailments and omissions are advised.

1. Onmit the long list of identities of §77.

9. Take only a limited selection of the problems of §90.

3. Omit Chapter IX, on inverse functions and trigonometric

iii



iv PREFACE

equations. The earlier treatment of these subjects is sufficient for
a brief course.

4. Omit Chapter X, on analytical trigonometry.

With these omissions the presentation of the subject is suitable
for use in the senior high school.

The author wishes to acknowledge his indebtedness to Pro-
fessor C. J. Rees of the University of Delaware and Professor
R. H. Marquis of Ohio University who have read the manu-
script and offered valuable suggestions.

W. C. BRENKE
August, 1942
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CHAPTER

l THE
TRIGONOMETRIC
FUNCTIONS

1. Why we study trigonometry.

The subject of trigonometry may be considered, in one of its
two principal aspects, to round out the subject of geometry. It
supplies the means of expressing in an exact quantitative way
much that geometry does only qualitatively. Here are some
examples.

(1) Geometry tells us that, in a given circle, a given central
angle subtends a definite chord, and how to construct the figure
on any desired scale. Trigonometry enables us to state an exact
formula for the length of the chord. The great astronomer
Ptolemy calculated a table of chords corresponding to various
central angles.

(2) Geometry tells us that a triangle is completely determined
when one side and two angles are given, and how to construct
the triangle on any desired scale. Trigonometry provides us
with exact formulas for calculating the unknown parts of the
triangle.

(3) Geometry tells us how to construct the resultant force of
two given forces. Trigonometry enables us to calculate this
resultant force.

(4) The geometry of the sphere, rounded out by spherical
trigonometry, is of basic importance to the navigator and

astronomer.
1



2 THE TRIGONOMETRIC FUNCTIONS

The second major aspect of our subject results from the fact
that the * trigonometric functions”, which we shall study
presently, are peculiarly adapted to express many important
relations in physics and mechanics and related fields. These
functions are among the most useful and basic tools which are
employed in the application of mathematics to the physical
sciences.

To indicate at least one such field of applications we note that
the studies of periodic phenomena, such as the vibration of a
pendulum or of a violin string, the periodic motion of a planet
about the sun or of an electron about the nucleus of its atom,
and innumerable other events of a regularly recurring charac-
ter, have their roots in the study of trigonometry.

2. Angles of any magnitude, positive or negative.
P Consider Z XOP (figure) as generated by
a moving line which rotates about O from
\ the position OX to the position OP.
0 X Divide the plane into four quadrants (I, II,
va' ! III, and IV in the figure below) by means of
two rectangular ares X’X and Y'Y.
Quadrant I is that covered by a half-line or ray rotating from

Y
11 I

111 v

Fia. 2a

0X to OY in the direction of the curved arrow, counterclockwise,
the angle turned through being 90°. Let a moving ray start
from the position OX, Fig. 2b, and rotate into the positions



RECTANGULAR COORDINATES 3

OP,, OP,, OP;, and OP; successively, thus generating the angles
XOP,, XOP,, XOP;, and XOP; respectively.
0OX is called the initial line, and OP; the terminal line of the

Y
Pﬂ
I +120° I P,
X’ 0 "X
P 240N
I v e
Y/
Fia. 2b

angle XOP;, and similarly for any other angle.

An angle is positive when the generating ray rotates counter-
clockwise (in the direction of the curved arrow in the figure),
negative when the generating ray moves clockwise.

The quadrant of an angle is that quadrant in which its
terminal line lies. The angle is said to lic in this quadrant.

The initial line OX, and any terminal line, as OP, may
always be considered to form two angles numerically less than
360°, as 4+ 120° and — 240° in the figure.

When the moving ray rotates from OX through more than
one complete revolution, an angle greater than 360° is gener-
ated. Thus a rotation in the positive dircction (positive rota-
tion) through 13 revolutions generates an angle of 480°, lying
in the second quadrant; a negative rotation through 2} revolu-
tions generates an angle of — 780°, lying in the fourth quadrant.

3. Rectangular coordinates.

With respect to the reference frame of Fig. 2a, any point in
the plane may be located by means of its distances from the two
reference lines and by adopting a rule to distinguish between the
different quadrants.

The two distances of point P from the reference lines are
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usually indicated by letters, as  and y in Fig. 3, and are named
as follows:

Fi16. 3

x = abscissa of point P, y = ordinate of point P.
The number pair (z,y) are called the rectangular coordinates
of point P.
To distinguish between the quadrants we use signed numbers
for the values of x and y, as indicated in the figure. This may
be summed up in the following table.

Quadrant Abscissa Ordinate
I + +
II - +
III - -
v + -

Exercise. On cross-ruled paper draw a pair of reference lines, mark
them with arrows to indicate the first quadrant, and locate the points
(z, y) determined by the following pairs of numbers. The first number is
the abscissa, the second the ordinate.

(2! 3)1 (4’ 2)1 ('_ 21 3), (‘ 4’ 2)) (_ 2; - 3)5 (— 41 - 2)) (2v - 3): (4! - 2)’
(51 0): (0’ 3)7 (‘ 5; 0)1 (0, - 3)

If P denotes any of these points estimate as well as you can the number
of degrees in the positive angle XOP; in the negative angle XOP.

4. The trigonometric functions of any angle.
In Fig. 3 draw a line from O through P, where P may lic in
any of the four quadrants. Consider OP as the terminal line of
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an angle with OX as the initial line. We are thus led to Fig. 4,
in which z is the abscissa and y the ordinate of point P, and
r = OP is the distance of point P from the origin. The dis-
tance OP is always considered to be positive, so that r always
stands for a positive number.

YA
P
r P
y
r
y
X X N
X ) X »X
y ’ > y
P P
Fig. 4

By taking the numbers z, ¥, r in pairs we can form six ratios,

namely
Yy z Yy r r x
-
These ratios are defined to be the siz trigonometric functions of
angle XOP, and are named as follows.
_ ordinate (of P)
~ distance (of P)’
abscissa
~ distance
_ ordinate
" abscissa
abscissa
ordinate
The secant of angle XOP = dlsta.nce.
abscissa
a distance.
" ordinate

The sine of angle XOP

The cosine of angle XOP

The tangent of angle XOP

The cotangent of angle XOP =

The cosecant of angle XOP
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It will be convenient to use a single letter to designate our
angle XOP. For this purpose we shall use the Greek letter
alpha, and put « = angle XOP. Introducing also the letters z,
y and r, and abbreviating the names of the trigonometric func-
tions, we have

. 7] r
sina==; CCa=—,
r y
X r
COsSa =—; SeCa = —;
r X
X
tana='l!; cot a =-.
x Yy

Here z and y stand for signed numbers according to the quadrant
of the angle «; the distance r is always taken as a positive
number.

What is the effect of changing the position of P along the
terminal side of the angle? The values of z, y and r will change,
but, because of the similarity of the triangles, their ratios will
remain unchanged. Hence the trigonometric functions depend
only on the angle «, and not at all on the particular point P
which we select on the terminal side of the angle.

The signs of the trigonometric functions.

According to the definitions we can construct a table showing
the signs of the trigonometric functions in the various quad-
rants. In quadrant I, z, y, r all are positive and likewise the
ratio of any pair of them is positive. Therefore, in quadrant I
all the six trigonometric functions are positive.

In quadrant I1, y and r are positive and z is negative. There-
fore the sine function (ratio y/r) and the cosecant function
(ratio r/y) are positive; the other four functions are negative.

Table of signs of the trigonometric functions
Quadr. sina cosa tana cota seca csc a

I + + + + + +
II + - - - - +
III - - + + - -

v - + - - + -
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Let the student verify carefully the signs in this table. He
should be prepared to state instantly the sign of any function in
any quadrant.

Observe that in the first quadrant all the functions are posi-
tive; in the other quadrants a function and its reciprocal are
positive, the remaining four are negative.

EXERCISES 1.

Determine the values of the six trigonometric functions of angle XOP
when the coordinates (z, y) of P are as given as below. Give exact values.

1. (3, 4). 6. (12, 5). 9. (8, 15). 13. (2, 3).

2. (-3, 4). 8. (- 12, 5). 10. (-8, 15). 14. (-2, 3).
3. (3, - 4). 7. (12, - 5). 11. (8, - 15). 16. (2, - 3).
4. (-3,-4). 8 (-12,-5). 12 (-8, -15). 16. (-2 - 3).

5. Approximate values of the functions of any angle.
If in the last figure the distances OP had been taken all of the
same length, all the

points P would lie on \ "t |
. BY 4
the circumference of a <B T
circle with center at O. Wy N
Let us draw a circle Ny i
with O as center and [£Alo 1 BE ey )
unit radius  (figure; ~FLIP T IINCC[T dlag
... osine cosine, R
1 = 10 small divisions). M oqsihel LN [ cosine M %
Then for any angle -f p // Samiil
i ' N &
XOP we have X\, /{ N
MP (D AP an H
sin XOP = =~ = MP, P - . P
oM ’ ~ atll)
cos XOP = 4 = OM. Fre. &
Thus the figure shows
sin 30°= .5 and cos 30° = .86;
sin 147° = .56 and cos 147° = —.83;
sin 228° = —.73 and cos 228° = —.67;

sin 317° = —.69 and cos317° = .72.
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By noting the valucs of MP at regular intervals as P moves
around the circumference, a complete table of values may be
constructed.

Hence approximate values of the sines and cosines of all angles

may be read off directly from the figure. The other functions

. .. . MP
may be obtained by division, since tan XOP = oM’ ete. They
may also be constructed graphically by a method explained in

the next article.

Exercise. By use of the figure determine to two decimal places the
values needed to fill out the following table.

Angle « sin a COs a tan « cot a seC a cSC a

30°

45°

60°

120°

135°

150°

210°

330°

6. Line values of the trigonometric functions.

The lines MP and OM, Fig. 5, measured with OP as a unit of
length, represent the values of sin XOP and cos XOP respectively.
They are called the line values of these functions.

The origin of the term sine is obscure. The Hindus used jya



LINE VALUES OF TRIGONOMETRIC FUNCTIONS 9

meaning chord and an Arabic distortion of the Hindu word was
rendered by sinus in later Latin works.

We shall note briefly the line values of the other trigonometric
functions for the casc of acute angles. Other angles may be
treated similarly, with suitable consideration of signs according
to the quadrant.

In Fig. 6a let « be an acute angle with initial line OX and
terminal line 0Q, NQ being tangent to the ecircle of radius 1
and center at the vertex of the angle. In triangle ONQ:

) _ord. NQ NQ
tan a = abs.ON ~— 1 ~ NG.
. _dist. 0Q 0Q _
e a= s oN~ 1 -9

Hence tan « is measured by a segment of a line tangent to the
circle and sec « is measured by a segment of a secant line. This
indicates the origin of the names of these functions.

R cota s
a
Q & H

e

$z°° tana 1 < 1]1

a —_—-X a i X
0 1 N 0 Mo

Fi1a. 6a Fic. 6b

In Fig. 6b, a = angle XO0S, and RS is tangent to the circle at
R. Then

OM OM
COta=m =T=0AI=RS.
08 OS
CbCa=-M—S=T=OS.

Norte. If, in Fig. 6a, we produce line NQ upward indefinitely and let
angle « increase toward 90°, we see that both tan & and sec a will increase
very rapidly and without limit. Fig. 6b shows similarly that cot « and
csc « increase rapidly and without limit as angle o diminishes toward 0°.
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7. The trigonometric functions of acute angles.

Let us consider a given acute angle a and construct a right
triangle ABC (Fig. 7a) containing this acute angle. Place the
A ABC in our reference frame, (Fig. 2a), so that the vertex A of
angle « shall fall at O, AC shall fall along the initial line OX,
and AB shall fall in the first quadrant. (Fig. 7b).

B Y B

hyp, r
opp. y

- a X
A adj. Cc Al X C

F1g. 7a Fic. b

Using point B on the terminal side of angle a as point P in
Fig. 4 we shall have

AC = z = abscissa of point B;
CB = y = ordinate of point B;
AB = r = distance of point B.

We can then write down the six trigonometric functions of angle
a according to the definitions. For example,

. ordinate of B CB y
Sina = 575 = o5 = =

But in the original triangle ABC (Fig. 7a), CB is the side
opposite angle @, and AB is the hypotenuse and therefore, with
respect to the original triangle, we can say that the sine of angle
a 18 the ratio of the side opposite angle a to the hypotenuse.

Any other right triangle containing the same acute angle «
would be similar to A ABC and would have the ratio of any
two of its sides equal to the ratio of the corresponding sides of
A ABC. Hence it would furnish the same values for the
trigonometric functions of the angle c.

.We may therefore restate our definitions of the six trigono-
metric functions, as applied to acute angles.

Let « be an acute angle, A ABC a right triangle containing
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this angle, A B its hypotenuse, AC the side adjacent to £ « and
CB the side opposite to £ «. (Fig. 7a). Then

. opposite side hypotenuse
sin ¢ = ———- CSC O = ——— "t
hypotenuse opposite side

adjacent side hypotenuse
cosa=——+ S = ——r"
hypotenuse adjacent side
tan o = opposite 51de. cot o = adjacent S1de'

~ adjacent side ~ opposite side

. Exercise 1. Use Fig. 5 to obtain approximate values, to two decimal
places, of the functions of 20° 50° and 70°. Check by the table in §8.

12
Exercise 2. In the adjacent figure de- ¢ 8 5

termine the exact values of the six func- 5 p £

tions of angle BAC; of angle CAD; of

angle BEF, F being the midpoint of BC. D < 5

8. Brief table of the trigonometric functions.

Angle Sin Cos Tan Cot Sec Csc
0(1
5 0.087 0.996 0.087 | 11.430 1.004 | 11.474

10 0.174 0.985 0.176 5.671 1.015 5.759
15 0.259 0.966 0.268 3.732 1.035 3.864
20 0.342 0.940 0.364 2.747 1.064 2.924
25 0.423 0.906 0.466 2.145 1.103 2.366
30 0.500 0.866 0.577 1.732 1.155 2.000
35 0.574 0.819 0.700 1.428 1.221 1.743
40 0.643 0.766 0.839 1.192 1.305 1.556
45 0.707 0.707 1.000 | 1.000 | 1.414 | 1.414
50 0.766 0.643 1.192 0.839 1.556 1.305
55 0.819 0.574 1.428 | 0.700 1.743 1.221
60 0.866 0.500 1.732 0.577 2.000 1.155
65 0.906 0.423 2.145 0.466 2.366 1.103
70 0.940 0.342 2.747 0.364 2.924 1.064
75 0.966 0.259 3.732 0.268 | 3.864 1.035
80 0.985 0.174 5.671 0.176 5.759 1.015
85 0.996 0.087 | 11.430 0.087 | 11.474 1.004
90
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EXERCISES 2.

1. Obtain from this table the values of the six functions of 32.5° to
three decimal places, assuming that they lie halfway between the values
for 30° and 35°

2. Obtain to three decimal places the values sin 31°, sin 32°, sin 33° and
sin 34°, by breaking up the interval between sin 30° and sin 35° into five
equal parts.

8. Obtain the values of cos 61°, cos 62°, cos 63°, cos 64°, and of sec 61°,
sec 62°, sec 63°, sec 64°, to three decimal places.

4, Determine the angle o to the nearest degree if sin « = 0.594; if
cos a = 0.594; if tan « = 0.384; if csc @ = 1.116.
6. For what angle does sin « = cos «? tan a = cot a? sec a = esc a?

The following equations are exact; show that they are very nearly sat-
isfied by the values tuken from the table.

6. 2 sin 30° cos 30° = sin 60°.

7. cost 30° + sin? 30° = 1. 9. cos?40° + sin? 40° = 1.

8. cos? 30° — sin? 30° = cos 60°. 10. cos*40° - sin® 40° = cos 80°.
9. The functions of 45°, 30° and 60°.

Any isosceles right triangle has cach acute angle equal to 45°.
A 30°-60° right triangle may be obtained by bisecting an equi-
lateral triangle. The simplest numbers to use for the lengths of
the sides are shown in Figs. 8a, 8b.

F1G. 8a Fi16. 8b

To obtain the functions of 45°, we apply the definitions of
§7 to Fig. 8a.

é

sin 45° = ?2 - = 0.707+. csc 45° = V2 = 1.414+.
cos 45° = —1\/—5 = -‘g—é = 0.707+. sec 45° = V2 = 1.414+.
tan 45° = 1. cot 45° = 1.
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To obtain the functions of 30° and of 60° we apply our defini-
tions to Fig. 8b. Note that side CB is opposite to 30° and also
adjacent to 60°; AC is adjacent to 30° and opposite to 60°.
The same triangle serves for both angles.

sin 30° = cos 60° = 3 = 0.5.
cos 30° = sin 60° = _\2_5 = 0.866+
\/._
tan 30° = cot 60° = \/—13 - -3§ — 0.577+
esc 30° = sec 60° = 2.
2 2V3
sec 30° = cse 60° = VG = Z—dj = 1.155+.

cot 30° = tan 60° = V'3 = 1.732+.

The functions of 30°, 45° and 60° are so useful that the
student should learn to read them off promptly from a mental
picture of the isosceles right triangle and the bisected equilateral
triangle.

EXERCISES

Verify the following equations by substituting the (exact) values of the
functions.

1. sin 30° cot 30° = cos 30°. 4. cot 30° sec 30° = csc 30°.

2. tan 45° cos 45° = sin 45°. 6. cos 30° sec 60° = cot 30°.

8. «in 60° see 60° = tan 60°. 6. sec 45° cse 45° — cot 45° = tan 45°.
7. cot 30° sin 60° + cos 60° = csc 30°.

8. tan 30° + tan 45° = tan 30°(1 + cot 30°).

9. (1 — cos45°) (1 + csc 45°) = sin 45°.

10. (ese 60° + cot 60°) (ese 60° — cot 60°) = 1.

10. Given one function, to determine the other functions.

When a function of an acute angle is given, the angle may be
constructed by writing the given function as a fraction, and
constructing a right triangle, two of whose sides are the numer-
ator and denominator of this fraction respectively, or like
multiples of these quantities. Also, since the third side of the
triangle can be calculated from the other two, all the other
functions of the angle may be found when one function is given.
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Example 1.
3 opp. side
tan « = 3 (= GiF side)' B
Lay off AC = 4 and CB = 3, CB perpendicular
to AC. S 3
Then AB = V424 3 =5,
Hence sine=%; cosa=%; A 2 Z 2

5 5
csCa = 3; seca = %; cot o = 4. §
3 'y 'g Fig. 9

Scaling off the angle with a protractor, we
have « = 37°. By taking from the table the angle whose tangent is
0.75 we have « = 37° as before.

Example 2. 5
seC a = 3 p— § - _@L).

Lay off AC = 1. With 4 as center and radius = 3, strike

an arc to cut the perpendicular drawn to AC at C. This 3

determines the point B. V8
The solution may now be completed as in example 1.
Another method of constructing the triangle in this /,

example is to calculate CB first, and then to proceedas A 1 c
in example 1. Fig. 10
11. EXERCISES 3

Determine the angle (approximately) and the remaining functions, when

1. sina = 13 6. tana = 3. 11. seca = 2.

2. sina = £. 7. tana = 3. 12. csca = 3.

3. sina = 04. 8. tana = V3. 18. cos a = 0.3.

4. cosa =32. 9. cota=1. 14, csc a = 2.5.

6. cosa =13 10. cot o = 2.5. 16. tan« = 10.

16. Show that the equation sin « = 2 is impossible.
17. Show that the equation cos a = 1.1 is impossible.
18. Show that the equation sec & = $ is impossible.
19. Show that the equation csec « = 0.9 is impossible.

When « is an acute angle show that,

20. sin « lies between 0 and 1.

21. cos « lies between 0 and 1.

22. sec a and csc « are always greater than 1.

28. tan a and cot @ may have any value from 0 to .
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12. Functions of complementary angles.
Since the sum of the two acute B
angles of a right triangle is 90°, they
are complementary. c
By definition we have, from Fig. 11, 3

By considering the other functions Fia. 11
and tabulating results we have:
sin B = cos a; tan 8 = cot «a; esc B = sec a;
cos B = sin «; cot B = tan «; sec B = ¢sc a.
Complementary functions, or cofunctions.

The cosine is called the complementary function to the sine
and conversely. Similarly tangent and cotangent are mutually
complementary, and secant and cosecant. The function which
is complementary to a function is called its cofunction.

RuLe: Any function of an acute angle is equal to the cof unctzon
of the complementary angle.

Exercise. Verify this rule when o« = 30°, 45°, and 60°. See also the
table of §8.

13. Application of the trigonometric functions to the solution
of right triangles.

When two parts of a right triangle are known, exclusive of the
right angle, the triangle may be constructed and the remaining
parts determined graphically. By the aid of tables of the
trigonometric functions, the unknown parts may also be cal-
culated.

RuLe: When two parts of a right triangle are given (the right
angle excepted) and a third part is required, write down that equa-
tion of §7 which involves the two given parts and the required part.
Substitute in it the values of the given parts, and solve for the re-
quired part.

An exceptional case arises when two sides are given and the
third side is required. In this case we may use the formula
a®+ b* = % It will usually be better, however, unless the given
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sides are represented by simple numbers, to solve for onc of the
angles first, and then to obtain the third side from this angle and
one of the given sides.

Example.

In right A ABC, given angle ACB = 90°, angle C.1B = o = 40°,
and side b = 60. Find the other parts of the triangle, ¢, a, and angle
ABC = 8.

B
B

40
A 60 C
Fia. 12

To get 8, we have g = 90° — « = 50°.

To get a, take % =tan a or a =) tan a.

Finally, ¢ is determined from
b

-=CcoSa Or ¢= = b sec a.
c COS a
From the table of §8, tan 40° = 0.839
and sce 40° = 1.305.
Hence a = 60X 0.839 = 50.340
and ¢ = 60X 1.305 = 78.300.

As a check, we should have a = ¢ cos g, or 50.340 = 78.300 X 0.643.

14, EXERCISES 4

Determine the unknown parts of right triangle ABC, C being 90°, from
the parts given below. Check results by graphic solution and by a check
formula containing the unknown parts. Use the table of §8.

1. a=35°%a=100. 6. B8 =15°%a =0.15.
2. a =65%b =150. 7. a=50° ¢ = 0.045.
8. a=48%c="175. 8. 8 =80°%¢c=1.25.
4. 8 =33°%c=50. 9, 8 =52°%a = 163.
B. B =58° b = 750. 10. a =25°% b = 0.04.

11. Find the length of chord subtended by a central angle of 110° in a
circle of radius 50 ft. (First find the half-chord.)

12. Find the central angle subtended by a chord of 90 ft. in a circle of
radius 200 ft.
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13. Find the radius of the circle in which a chord of 120 ft. subtends an
angle of 70°.

14. Find the length of side of a regular decagon inscribed in a circle of
radius 300 ft.

15. Find the length of side of a regular pentagon circumsecribed about a
circle of radius 200 ft.

16. From a point in the same horizontal plane as the foot of a flag pole,
and 200 ft. from it, the angle of elevation of the top is 20°. How high is
the pole?

17. A vertical pole 35 ft. high casts a shadow 50 ft. long on level ground.
Find the altitude of the sun.

18. If a road rises at an angle of 5°, how many feet does it rise in a
distance of onc mile measured along the road?

19. If the long arm of a earpenter’s square is 24 inches, how far along
the short arm should he place a mark so that the line from the mark to
the far end of the long arm will make an angle of 22.5° with the long arm?

20. In Ex. 19 what would be the angle if the mark were placed on the
short side 12} inches from the vertex of the right angle ?



CHAPTER

II VARIATION OF THE
TRIGONOMETRIC
FUNCTIONS

15. Variation of the sine function. Graph. Periodicity.

Suppose the point P of Fig. 5 to describe the circumference of
the circle in such a way that angle XOP varies continuously
from 0° to 360°. Let us trace the changes in the ordinate MP
or, what is the same thing, in the sine of angle XOP.

In quadrant I, MP or sin XOP increases from 0 to +1.
In quadrant II, MP or sin XOP decreases from +1 to 0.
In quadrant III, M P or sin XOP decreases from 0 to —1.
In quadrant IV, MP or sin XOP increases from —1 to 0.

To represent these changes graphically we shall take z to
stand for the number of degrees in angle XOP and make a dia-
gram showing the value of sin z for a selected set of values of
angle z.

Note. It will be convenient here to use the letter = to represent our
variable angle. This use of the letter should not be confused with its
earlier use a8 the abscissa of a point.

In Fig. 13, below, the horizontal central line is the angle scale,
on which one division is taken to represent 15° of angle, so that
six divisions represent 90°. On the angle scale, or z-axis, a dis-
tance measured to the right from O represents a positive angle z.
The quadrantal values z = 90°, 180°, 270°, 360° are represented
by 6, 12, 18, 24 divisions respectively.

18
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On the vertical scale we choose a convenient length to repre-
sent the sine of 90° which is 1. This is subdivided into 5
divisions in the figure.

0° 90° 180 270 360°
+1 I
/1 -] t -4
N L - 1
T ~ ]
// A \\ 4 .4
0 T >X
! -
- 4 \\\ 1. //)
- } T !
0° 90° 180° 270° 360°
Fia. 13

At intervals of 15° on the angle scale, starting with z = 0,
dots are placed above or below this scale, the height of each dot
representing the value of sin . These values may be read off
from Fig. 5. Joining the dots by a smooth curve gives us a
graphic picture of the varying values of sin z, as z changes from
0° to 360°. The approximate value of the sine of any angle can
be read off at once from this graph of sin x, commonly called the
sine curve.

Periodicity. The sine curve has a simple wave form. By con-
tinuing it from 360° to 720° another wave would appear, and so
on indefinitely. By taking negative values of z, to the left from
0°, these waves could be continued to the left.

A function of z, f(x), which goes through the complete eyele of
all its values when z ranges from z = a to z = a + h, and again
when x goes from a + k to a + 2h, and so on, is called a'periodic
Sunction with period h. In symbols,

f@) = f(x+h) = f(z + 2h) = f(z + nh),
when 7 is any positive integer.
The function sin x has this character because

sin x = sin (z 4+ 360°) = sin (z + n-360°).

Therefore sin x is a periodic function with period 360°.
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16. Variation of the cosine. Graph. Periodicity.

In Fig. 5 the abscissa OM gives the value of the cosine of angle
XOP. 1In the notation of §15, OM = cos x. We sce that OM,
or cos x, varies from 1 to 0 in quadrant I, from 0 to —1 in
quadrant II, from —1 to 0 in quadrant III, and from 0 to +1
in quadrant IV.

If we take the values of cos z for values of = at intervals of
15°, starting with z = 0°, and place dots to mark these values as
was done for sin z, we obtain the graph of cos z, or the cosine
curve.

0° 90° 180° 270° ‘360°

+ 1 +1

N T 1T Paui

L _;( -

44 bl A L]
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o} 1>

. B i i e - bt —

N [T . TE

N T

RSuE=4EiSnaa Tty

0° 90° 180° 270° 360°
I'g. 14

This is a wave curve just like the sine curve, but with the
crests of the wave 90° behind the crests of the sine wave. Wesay
that the two waves differ in *“ phase ”’ by 90°. Sce Fig. 15.
Periodicity. Just as for the sine function we have

cos z = cos (z + 360°) = cos (z + n-360°).

Therefore, cos z is a periodic function with period 360°.

+190° 0° 90° 180° 270° 360° 450° 540° 630°
s ~. ,f’ N |
s N 4 < |
//lzlo9 \\\ l/’/ \\\\
2 X
° +, ‘\\ / \\\ /
5 .. ! . N\
-1 S LN ol
-90° 0° 90° 180° 270° 360° 450° 540° 630°
I'ic. 15

For convenient comparison we show the graphs of both sin z
‘and cos z on a single diagram.
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EXERCISES '

1. For what values of z is sinz = 0? cosz = 0?
2. For what values of z issinz = +1? cosz =+1?
3. For what values of z is sin z = cos z?
17. Variation of sec x and csc x. Graphs. Periodicity.
FFrom the definitions of sin x and e¢sc x we have
ordinate _ distance 1

SINZ = 5 CSCX = ~———r SoeSC X = —
distance ordinate sin x

Henee when sinz = 4+1or =1, alsoesexr = +1or —1. Assinz

decreases and approaches 0, cse x will increase and grow rapidly
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larger in numerical value. Fig. 16 shows the graph of esc z and
its relation to the graph of sin .

. . 1 .
Likewise we have sec z = Py and Fig. 16 shows the graph

of see z in its relation to cos z.

When z = 0°, sin z = 0 and cse 0° has no value. Whenzisa
small positive angle, as ¢ = 1°, sin x is quite small and ecsc  is
very large. As angle z approaches zero from the right, e.g.
z=1° z=0.1° z =0.01°, x = 0.001°, ctc.,, csc z incrcases
indefinitely. We say that csc « becomes positively infinite as =
approaches 0 from the right and write cse (0° +) = + . When
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z is a small negative angle, as r = —1°, csc z is represented by a
large negative number. As z approaches 0° from the left esc z
increases indefinitely in the negative direction; csc z becomes
negatively infinite as z approaches 0° from the left and we write
ese (0° =) = — ». More briefly we write esc0° = £ o ac-
cording as 0° is approached from the right or the left. A similar
situation exists at 180° and at all other even multiples of 90°,
positive or negative.

In the same way we are led to wrlte see (90° =) = + o and
sec (90° +) = — o, or, more briefly, sec 90° = + «; similarly
at all odd multiples of 90°.

Nore. It should be carefully noted that the symbol « is not a number,
and that the statement csc 0° = + © does not assign a value to csc 0°.
It merely indicates that, as angle z approaches 0°, csc z increases or de-
creases without limit.

18. Variation of tan x and cot x. Graphs. Periodicity.

In quadrant I, tan z starts at 0 when z = 0, becomes 1 at 45°
and increases rapidly and without bound as = approaches 90°.
Just after x = 90° tan z has a large negative value, becomes —1
at = 135° and 0 at z = 180°. In quadrant III the values in

-90° 0°  90° 180° 270° 360° 450° 540°

. g g

\
v
\ \
\ \
\ \ \
\
+1 — t

Q‘\-

N
g \ \ \
0

o _-
/x)g,._—

\ N “

K 3A X

2
\
\
\
-1 y
\ \ \ \
\ \ \ \
\ \ \
-2

-90° 0° 90° 180° 27Q° 360° 450° 540°
Fia. 17

.quadrant I are repeated; in quadrant IV, the values in quadrant
IT are repeated. Similarly we can trace the changes in cot z.
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The graphs of these two functions are shown in Fig. 17. Be-
cause cot £ = 1 + tan z, either function has a large value when
the other has a small value. The two functions are both positive
or both negative, according to the quadrant of the angle.

Periodicity. The functions tan z and cot x are periodic, with
period 180°.

We have tan z = tan (z 4+ 180°) = tan (z + n-180°).
Similarly for cot z.
As z approaches 90° tan z increases (or decreases) without

limit. We write tan 90° = + ». Also tan 270° = + =, etc.
Likewisc cot 0° =+ =, cot 180° = + =, ete.

Exercise. Make a chart showing all six of the trigonometric functions

on one diagram. Dotted lines, or lines of different colors, may be used
to distinguish the different curves.

19. Relations between the functions of an angle.
From the general definitions of the functions given in §4,
putting angle XOP = z, we find that

. 1 1
sSiIn r = ; COST =-——; tanz = .
CSC &L sec x cot x
ordinate
ordinate distance sin z cos r
tanz = - = - = ; cotxr = —.
abscissa  abscissa  cosz sin
distance

Also, whatever be the quadrant of angle XOP
§4), we have

(ordinate)? + (abscissa)? = (distance)2.

z (figure of

1

Dividing this equation through in turn by (distance)?,
(abscissa)?, and (ordinate)?, and expressing the resulting ratios
as functions we have

sinfz 4 cos? r =1,
1 + tan®>x = sec?z,
1+ cot? x = csc? z.
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All the above relations between the functions of angle z are
true for all values of x. They form a first set of working formu-
las, and should be thoroughly committed to memory. They are
collected below, as

Formulas, Group A

(1) sin x = 1 (6) sin*x + cos® x = 1.
T escx sin x
1 4) tanx = oS X

(2) cosx = secx cos x (7) 1+ tan® x = sec*x.
1 (5) cot x = sinx

(3) tanx = col x (8) 1+ cot*x = csc? x.

We shall apply these formulas in two examples.

Example 1.
Prove that tan r + cot r = sec x csc x.
sinx  cosx sinfu4 costz
tanx 4 cot x = : = +
cosx  sinz sin x cos x
1 1 1
= - = = ¢sc X sec X.
sinz cosx sinx coszx
Example 2.
Prove that
eser = Cos 2
tan x + cot = :
csc x csc x

tanz 4 cotx sinz  cosz
cosr  sinzx
csc x
sin? r + cos?
Tsinz cosz
esc x .
=—F] — =cscrsinzcosz = cosa.

sin x cos

In both examples all the steps taken are true for all values of z,
since this is true of all the formulas of group A. Hence the given
equations are true for all values of = for which the functions are de-
fined, and they are therefore called trigonometric identities.

The equation sin? z — cos? z = 1 is not true for all values of z, but
holds only for certain special values; it is not an identity.
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20. EXERCISES 5
Prove the following identities:
1. sinz cotx = cos z. csc z
4. = sec z.

2, ————— =cos«r cot z

" tanzcscx ) 6. (sinzz + cos?z)? =1,
see sin 6 Y

. tan z = CSC Z. 6. m = tan? 4.

(For names of Greek letters see first page of appendix.)

7. (csc 8 — cot 9) (esc @ + cot 8) = 1.
8. (secz —tanz) (secx + tanz) = 1.
9. (sinf@+cos0)2 =1+ 2sin6 cosé.
10. sin?a + cos? @ = csc? a — cot® a.
11, (sina - cosa)t =1 — 2sin a cos a.
12. sin*z — costx = sin?z — cos® z.
13. (1 - cos?r) sec®r = tantz.
14. tan?6 — sin® @ = tan?6 sin? 4.
16. sec @ escd — cot 6 = tan 6.
16. cot ¢ cos ¢ + sin @ = esc .
17. cos*p esc* ¢ =csct o — 1.
18, sin ¢ _ 1 - COS @
1+cose sin ¢
I +tan?g  sin® 8
19, — = .
1+ cot? B8 cos?p
20. (1 —cos?2pB) (1 +cot2B) = 1.
21. tan*z —sectz =1 - 2scc’z.
cosz+sinz 1+tanz
22. = :
cosz—sinzx 1 -tanz
23. (tanz —1)(cotz —1) =2 —secz csc .
sin 0
1 —cos 6
26. (acosz —bsinz)? + (asinz + bcosr) = a + b
26. cos? ¢ + (sin ¢ cos 0)* + (sin ¢ sin )? = 1.
27. tan a + tan 8 = tan a tan B (cot a + cot B3).

24. cscf 4 cot 8 =

21. The functions of any angle in terms of the functions of an acute
angle.

It is possible to express in a simple manner any function of any
angle in terms of the proper function of an acute angle. Then
a table of the values of the functions of angles from 0° to 90°
will serve for all angles. In fact, in view of §12, a table of func-
tions of angles from 0° to 45° would be sufficient, though not
convcnient.
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I. Any angle, positive or negative, can be made to corre-
spond to a positive acute angle by adding to it, or subtracting
from it, an integral multiple of 90°.

Examples.

(a) 780° — 8 90° = 60°. (c) 510° — 5x 90° = 60°.
(b) — 480°+ 6 90° = 60°. (d) — 750°+ 9 X 90° = 60°.

7807 0’
60 ° 60°
6 4
Y Y //4 5 10 ° Y //I Y //’
// /l I/
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/ /l //
/ N N / N
0 X o X ol X 0 X
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-750
-480°
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In what follows, we designate the original angle by 8 (theta)
and the new angle by 6'.

II. Let OP be the terminal line of a given angle 0. (Fig. 19)
When angle 6 is changed by an even multiple of 90° the
terminal line of the new angle, 6, will coincide with OP or with

4
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0 X’ w X
y
r
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Fig. 19

its continuation OP’. In the first case the angles 8 and 6’ have
the same terminal line and hence the same set of function values.
In the second case the functions of ¢’ are determined by A OM'P’
which is directly similar to A OMP, ordinate corresponding to
ordinate and abscissa to abscissa. Therefore any trigonometric
ratio from A OMP will have the same numerical value as the
corresponding ratio from A OM’P’, but may differ from it in
sign.
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RuLe (a). Any function of an angle 8 is numerically equal to the
same function of 6’, when 6" differs from 6 by an even multiple of
90°.

In symbols, if f stands for any one of the six functions,

f(8) = = f(6') where 6 =6 + n x 90°; n even.

When the new angle 8’ s an acute angle (first quadrant) choose
the sign before f(6') + or — according as the function of the original
angle 6 1s + or —.

Examples.
(The student should draw illustrative figures.)
1. 600° — 6 X 90° = 60°; sin 600° is negative and tan 600° is positive.
-~ sin 600° = — sin 60°; tan 600° = + tan 60°.
2. — 510°+ 6 X 90° = 30°; sec (— 510°) is — and cot (— 510°) is +.
- sec (— 510°) = — sec 30°; cot (— 510°) = cot 30°.

III. Again let OP be the terminal line of a given angle 8. In
T'ig. 20 angle 6 is taken to be in quadrant II.
When angle 6 is changed by an odd multiple of 90° the terminal
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line of the new angle, ¢, will lie at right angles to OP, in the
direction OP’ or OP”. If we take & as the first quadrant angle
XOP', we note that A OM'P’ is inversely similar to A OMP,
in the sense that abscissa x’ corresponds to ordinate y, and
ordinate y’ is homologous to abscissa . Hence any function of
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6 is numerically equal to the co-function of §’. Exactly the same
is true if we take 6 as having the terminal line OP”. So we have

RuLe (b). Any function of an angle 6 is numerically equal to the

cofunction of 0, when 6’ differs from 0 by an odd multiple of 90°.
In symbols, if f stands for any one of the six functions,
f(0) = + co-f(8"), where 8 =6 + n x 90°; n odd.

When ¢ is an acute angle (first quadrant) choose the sign

before co-f(6’) 4+ or — according as the function of the original
angle 6is + or —.

Examples.
(The student should check by drawing figures.)
1. 680° — (7 X 90°) = 50°. sin 680° = — cos 50°;

tan 680° = — cot 50°.
2. —390°4 (5 X 90°) = 60°. cos (— 390°) = sin 60°;
cot (— 390°) = — tan G0°,
22. EXERCISES 6

Express all the functions of the following angles in terms of functions
of acute angles:

1. 140°. 6.  355° 9. — 318°. 13. - 1040°.
2. 155°. 6. — 35° 10. 738°. 14. - 410°
3. 235°. 7. —115° 11. - 670°. 16. H35°.
4. 335°. 8. - 255° 12.  1120° 16. — 103°.

Express all the functions of the following angles in terms of functions
of angles between 0° and 45°.

17.  75°. 19. 110°. 21. - 335°. 23.  790°.
18. - 80°. 20. 255°. 22.  600°. 24, - 510°.
Give the exact values of the functions of:

26. 120°. 29. - 30° 33. — 240°.

26. 135°. 30. - 45°. 34. 315°.

27. 150°. 31. - 60° 36. 600°.

28. 300°. 32. - 120°. 86. —510°.

23. Relations between the functions of + 6 and — 6.

The figure is drawn for angle 6 in the first quadrant. Taking
equal distances on the terminal lines of + 6 and — 6 and drawing
the ordinates, we have two triangles with a common abscissa and
ordinates numerically equal but of opposite signs.

Comparing the trigonometric ratios of — 6 with those of + 6
we see that
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sin (= 0) = — sin 6;
ese (= 60) = — cse 6 ’
tan (— 0) = — tan6; + +
cot (= 8) = — cot 6; 5+ .
cos (= 0) = cos 6; oYt
see (— 0) = sec 6. I
Rere.  The cosine and secant re- P’
Fia. 21

main unchanged when the sign of the
angle is changed; the other four functions change sign when the
sign of the angle is changed.

Exercise. Draw a figure and show that these equations are true when
g is in the second quadrant; in the third quadrant; in the fourth quadrant.

24. EXERCISES 7

For the following angles draw figures to verify the rule of §23. Where
possible give the exact values of the functions.

1. - 457 5. — 120°. 9. - 103° 13. — 225°
2. - 30°. 6. — 150", 10. - 35° 14. — 410°
3. - 60°. 7. - 135° 11, - 255°. 15. — 1040°.
4, — 90°. 8. —115°. 12. - 75° 16. — 318°
25. Versed sine, coversed sine, haversine.
The three expressions 1 — cos8, 1 —sin, 3(1 — cos6)
occur often enough in the applications K
of trigonometry to warrant the use of
speeial symbols for them. These are
1 — cos 8 = versed sine of 6 = vers 6; H
1 — sin 6 = coversed sine of 6 = covers 8; 1
(1 — cos 0) = haversine of 6 = hav 6. %
. 0 M N
In the figure, 8 being an acute angle
gure, 8 £ Fia. 22

vers 8 = MN because MN = ON - OM
and ON =1, OM = cosf. So vers9 represents the * rise”
of an arc above its chord in a unit cirele.

EXERCISES 8

Find the values of vers 8, covers 8 and hav 6 for the following angles.

1. 30° 4. 90°. 7. 150° 10. - 225°.
2. 457 6. 120°. 8. — 30° 11. - 300°.
8. 60° 6. 135°. 9. - 120° 12. - 315°.
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26. Radian measure.

The degree is an artificial unit for the measurement of angles.
In France, where at the time of the Revolution an attempt was
made to put all measurements on the basis of the decimal scale,
the quadrant of the circle was divided into 100 equal parts and
the angle subtended at the center by one part was called a grade.
Each grade was then subdivided into 100 equal parts called
minutes, and each minute into 100 seconds. The degree and
the grade are thus two arbitrary units for the measurement of
angles, and any number of such units might be chosen.

In the artillery service a common unit of angle is the mil, so
chosen that 1600 mils make a quadrant of 90°. This will be
discussed in Chapter VII.

There is one unit which is naturally related to the circle, and
which is as commonly used in theory as the degree in practice.
It is the central angle sublended by an arc equal in length to the
radius of the circle, and is called a radian (figure).

Since the circumference contains the radius 2= times, the
entire central angle of 360° contains 27 radians, i.e.,

27 radians = 360°.
30
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Hence,
7 radians = 180°;
5 T radians = 90°;
™ 0.
i radians = 45°; and so on.

In dealing with angles
measured in radians it is cus-
tomary to omit specifying the
unit used; it is understood
that when no unit is indicated
the radian is implied. Thus,

= 360°, 7 = 180°, g = 60°, 21 = 21 radians, and so on.

Note. To get the standard form of the graphs of the equations y = sin z,
y = cos z, ete., take z in radians on the z-axis, thus: z = 0.1,0.2,0.3,. . .,
1, . . . and find the corresponding values of y; use the same unit of length
for both z and y.

27. Radians into degrees, and conversely.

Since 2r (radians) = 360°,

360° 180°  180°

thercfore, 1 radian = 2r 1w 3.1416—

= 57.3+°%;

also, 1 degree = =T (radians) = (radians)

360 180

1 . .
5737 (radians) = 0.017+ (radians).

RuLe: To convert radians into degrees, multiply the number of

radians by 1—:1) or 57.3+.

To convert degrees inlo radians, multiply the number of degrees

T 1
by ITO 5737 or 0.017+.

By taking a sufficiently accurate value of =, we find,
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1 radian = 57.2957795° = 3437.74677" = 206264.8".
1° = 0.0174533 radians.
" = 0.0002909 radians (point, 3 ciphers, 3, approx.).
1”7 = 0.0000048 radians (point, 5 ciphers, 5, approx.).

The measure of an angle in radians is often called the circular
measure of the angle.

Examples.
1. Express 240° in radians.

4x .
240° = 240 X 186 radians = 3 radians.

2. Express in degrees the angle whose radian measure is 1 + .
(14 =) radians = (14 =) X 1;@ degrees = <1—8~(—)+ 180) degrees
™
= 57.3°+ 180° = 237.3°+.

9
3. Express in degrees the angle whose circular measure is ’"—1 ra-
-
dians.

We can see that, since = = 3.144, the given fraction has a value a
little less than 1; hence the angle is a little less than one radian, hence
less than 57.3°. Making the reduction we have

2

2 . 180 360
radians = —— X “— degrees = ——— degrees
- l. ™ — 1 m ‘ll'2 8

360
= 6735 degrees = 53.5°+.
See also Table V, Appendix.

28. EXERCISES 9

Express in degrees, minutes and seconds the angles whose radian meas-
ures are:

115_"'2&_'& 41+.,,.Ill_2_.,,2
123165 15 ‘4 "4 32 x-3""
2. 2,15 %4, 8 5 ™ m x4+ 1
5 3 2« 3 221r+5 "w+l l-xx-1

2 217373 78

Reduce the following angles to circular measure:
6. 30° 120°, 150°, 225°, — 60°.

7. 375°, — 223°, 187.5°, 106°, 93° 45/

8. 85° 191°15’, 5°37/ 30", 90° 37’ 30".

9. 10, 10".0.1",12°5’ 4", 21° 36’ 8.1".
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29. Circular arc, sector, segment.

Let 6 be the radian measure of the central angle subtended by
an arc of length a in a circle of ra-
dius 7. B

(a) Now, in a given circle, ares are
proportional to their central angles;

o

also, the whole circumference sub- A
tends at the center an angle of 360°
or 2 radians. Therefore (Fig. 24)

arc AB a 0
circumference  2xr  2x Fia. 24
Therefore a=rh.

The length of a circular arc equals the product of the radius times
the central angle (in radians).

(b) Also, in a given circle, the areas of sectors are proportional
to the central angles of the sectors. Therefore, if S = area of
sector ACB,

arca of seetor S 0

area of circle w2«

Therefore S = }r%.

The arca of a circular sector equals the product of onc half the
square of the radius times the central angle (in radians).

(¢) In Fig. 24a we have a segment ADBA of a circle cut off
by chord .1B. Then
area of segment = area of sector — area of triangle.
arca of sector = 3r%0. (0 in radians.)
To find the area of A CAB, let BE be B
drawn perpendicular to CA. Then
BE = r xin 0.

arcea of ACAB = } base times altitude
=3CA-EB A
=31r-rsinf =1rsiné.

Therefore .

area of secgment = 1 7% — 1 r2sin 0

=37r(0 —sind). Fia. 24a
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EXERCISES 10

1. In a circle of radius 12 inches a chord is drawn 6 inches from the
center. Calculate the length of the chord and of the arc and the area of
the segment.

2. Determine the area between a eircumference of radius 10 inches and
a regular inscribed pentagon.

8. The area of a sector is 50 square inches and its central angle is 2
radians. Find the radius of the circle.

30. Angular and linear displacement; angular and linear speed.

When we say that a wheel rotates at the rate of 10 R.P.M.
(revolutions per minute) we mean that a given radius of the
wheel would turn through an angle of 10 x 360° or 3600° in onc
minute if the rate of rotation remains constant during that
minute. For rate of rotation we commonly use the term angular
speed, and designate it by the Greek letter omega, w.

When the rate of rotation, or angular speed, is 10 R.P.M.
we write

w = 10 R.P.M,, or w = 10 rev. per min., or @ = 10 rev./min.
This is equivalent to any of the following:

w = 60 X 10 rev. per hour = 600 rev./hr.

w = g% X 10 rev. per sec. = } rev./sec.

w = 10 X 360° per min. = 3600 degr./min.
w = 10 X 27 rad. per min. = 207 rad./min.
w = 60 degr./sec. w = g rad./sec.

Then the same angular speed may be indicated by many
different numbers, depending on the unit of angle and the unit
of time.

The angle 6 through which a given radius of the wheel turns
in ¢ units of time will be ¢t X w. This is called the angular dis-
placement in time ¢; 6 = wt.

Angular displacement = angular speed X time.

Examples.
If w =30 degr./sec. and ¢ = 10 sec., § = 300°.

If w= % rad./min. and ¢ = 20 min., 8 = 10~ radians.
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Suppose that we follow the motion of a point on the rim of
a wheel rotating with constant speed. Let P be the point, »
its distance from the center, w the angular speed in radians per
unit of time, and @ the angle in radians turned through in ¢
units of time.

If the wheel rotates through angle

6 in time ¢ we have 3
0=wt and 70 = rut. r
So we see that A
18 = arc AP = linear displacement of 8 0 Q A
P in time ¢ .
rw = displacement of P in a unit of
time. -
= linear spced of P. Fie. 25
Example 1.

A wheel 4 feet in diameter is rotating with uniform angular speed
of x radians per second. What is the linear speed of a point on the
rim? How far will such a point travel in 10 seconds?

Here r = 2 feet, w = = rad./sce., t = 10 sec.
Linear speed of P = rw = 2x ft./sec.
Linear displacement of P = r8 = rwt = 20~ feet.

Example 2.

Suppose point P, Fig. 25, to be moving with uniform speed of 20
feet per second in a circle of radius 5 feet. What is its angular speed,
and what is its angular displacement in time ¢ seconds?

In t seconds I’ moves through an arc of 20¢ feet. Central angle
6 = arc + radius = 4¢ radians.

But 6 = wt. Therefore « = 4 radians per second.

Simple harmonic motion. As P moves uniformly around the circle
point Q, which is the foot of the perpendicular from P on BA (Fig.
25), moves back and forth along the diameter AB. Its distance from
0 is 0Q = r cos 6 = r cos wi.

Point @ will move slowly when 6 is near 0°, it will increase its speed
as 6 becomes 90°, and then diminish its speed as 6 nears 180°. This
cycle will be reversed as 6 varies from 180° to 360°.

DerintTioN. Point @ is said to have simple harmonic motion.
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31. EXERCISES 11

1. If 6 is the degree measure of a central angle, show that

= =T - se - 2 .
a = arc 1 xrx80 and S =sector 3,0xr X 8

2. If r = 100 inches, find the length of arc and area of sector (a) when
0 = 1 (radian). (b) When 8 = 0.5. (¢) When 6 = 1.5. (d) When 6 = 30°.
(e) When 6 = 75°.

3. Find the central angle (a) when r = 100 and a = 25. (b) When
r=100and a = 125. (¢) Whenr = 100 and S = 1000. (d) When r is 100
and S = 100. In each case give the value of 6 in radians and also in degrees.

4. Taking the radius of the earth as 3960 miles calculate the number
of feet in an arc of a meridian whose central angle is 1’. This is the nau-
tical mile.

Show that the nautical mile is about one seventh longer than the statute
or land mile.

6. In a circle of radius 100 inches a chord is drawn at a distance of
80 inches from the center. Find the length of the chord and of its subtended
arc. Find the area of the segment formed by this chord and its are.

6. A cylindrical gasoline tank 12 feet long and 4 feet in diameter lies
on its side in a horizontal position. Measurement shows that the depth
of the gasoline at the center is 16 inches. How many gallons of gasoline
are there in the tank?

7. To a circle of radius 100 inches tangents are drawn at two points
separated by an arc 50 inches long. Find the angle between these tan-
gents.

In Fig. 24a the following quantities appear:

AC, AB, angle ACB, arc ADB, sector CADBC, triangle ABC, segment
ADBA.

8. Calculate each of the other quantities when AC = 50 and AB = 40.
9. Asin Ex. 8 when AC = 50 and arc AB = 20.
10. How many radians are there in the central angle subtended by one
side of a regular inseribed decagon?
11. How many radians in the central angle subtended by an arc of 150
feet in a circle of radius 50 feet?
12. A wheel makes 1000 revolutions a minute. Find its angular speed
in radians per second.
13. How many revolutions per minute are equivalent to an angular
speed of 3= rad./sec.?

14. What is the angular speed if a point on the rim of a wheel of radius
10 inches moves with a linear speed of 25 inches per second? Give the
answer in radians per second and also in revolutions per minute.

16. If a turbine wheel is 8 feet in diameter how fast would it have to
rotate to cause a point on the rim to move with the speed of sound in air
(1080 ft./sec.)?

16. In Example 2 of §30 calculate the length of OQ at intervals of
0.1 sec, fromt=0tot=1.



DIRECT USE OF TABLES 37

32. Use of tables of natural trigonometric functions.

Such tables give the values of the functions of angles from 0°
to 90°. But they will serve for all angles since any function of
any angle is reducible to a function of an acute angle.

Table IIT of the Appendix gives the values, to 4 decimal places,
of the six functions of angles from 0° to 90°, at intervals of 10,
For intermediate angles we obtain the function values by
interpolation.

Such tables are used in two ways.

(a) Directly. Given the angle to find the numerical value of
one of its functions.

(b) Inversely. Given the numerical value of a function to find
the corresponding angles.

We shall illustrate the direct use of the tables by examples.
The tables give only four decimal places; therefore answers are
given only to four decimal places. Note that angles read down
on the left from 0° to 45° and up on the right from 45° to 90°.
The names of functions at the top of the page apply to the angles
at the left, those at the bottom of the page to the angles at the
right. Our examples will include angles from the various quad-
rants, including negative angles.

We use the principle of linear interpolation, that is, we assume
that, for sufficiently small changes in the angle, the change in the
Junction is proportional to the change in the angle. This principle
does not apply to some of the functions of angles near 0° or
near 90°.

1. sin 21°13' = ?

S ° 10" = 0.36 .
in 200 0B o
sin 21° 13’ = 0.3611 + 0.3 (0.0027)

= 0.3619

2. cos 70°32'=7?

° 30" = 0.33: .
IOy o
cos 70° 32’ = 0.3338 — 0.2(0.0027)

= 0.3333
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Now we may add .7 of the difference to 1.5294 or subtract .3 of the
difference from 1.5346. The latter way is preferable.

(b) of §21.

then reducing by 90° (§21).

USE OF TABLES OF NATURAL FUNCTIONS

3. tan 150°15' = ?

150° 15’ — 1 X 90° = 60° 15"

tan 150° 15’ = — cot 60° 15,  (§21)

cot 60° 10" = 0.5735 .

cot 60° 20" = 0.5606  Giff- = — 0.0039
cot 60° 15" = 0.5735 — .5(0.0039) = 0.5715.
tan 150° 15’ = — 0.5715.

. tan (— 150°15') = ?

— 150° 15’4 2 X 90° = 29° 45'.
tan (— 150° 15’) = tan 29° 45’ = 0.5715. (§21)

. esc (— 400°43) =7

— 400° 43’ 4+ 5 X 90° = 49° 17",

csc (— 400° 43’) = — sec 49° 17", (§21)
sec 49° 10’ = 1.5204 ) i
sec 49° 20" = 1.534¢  diff- = 0.0052

sec 49° 17" = 1.5346 — 0.0016 = 1.5330.
csc (— 400°43') = — 1.5330.

Example 6.

sec( )—?

radlans =z 180° = 102° 51.4’.

sec 102° 51.4’ = sec (90°+ 12° 51.4') = — csc 12° 51.4’ = — 4.5042.
Example 7.

(3—47")=?

4—7”) radians = 3 radians — 47’r radians

= 171° 53.2' — 102° 51.4’ = 69° 1.8’
cos 69° 1.8’ = 0.3579.

Note. In these examples we have systematically followed Rules (a) and
Other procedures may be followed. The angle — 150° 15
can be brought into the first quadrant by changing its sign (§23) and
That is, we go from — 150° 15’ to + 150° 15/,

then to 60° 15’. To determine tan (- 150° 15’) we would have

tan (-150° 15’) = — tan (150° 15’) = cot 60° 15'.

We get
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33. EXERCISES 12

Determine the values of sine, tangent and secant of each of the following
angles. For Exerciscs 1-12 use a four-place table, for the rest use a five-
place table.

1. 32°25". 8. —98°18". 16. 61°53'15". . 3
2. 17°42'. 9. - 122°25". 16. — 8°18'40". 7
8. 61°53". 10. 287° 42" _— 22. 1+§.
4. 8°18". 11. 511°53". 7 o
6. 122°25. 13, 548°18. 18. 7 - 1. 8.
8. —17°42". 18. 122°25.7". 19. 2 4 2e 1T
7. 241°53. 14, 17°42.3". 20. 3r - 2. "7

34. All angles corresponding to a given value of a function.

We have here the problem of the inverse use of a table like
Table I1I, referred to in §33.

When a given value is assigned to one of the functions, as
sin @ = 3, there will in general be two possible positions of the
terminal line, and only two. Ixceptions occur when the terminal
position falls on one of the quadrant lines, when there may he
only one possible position. An angle whose terminal line falls
on a quadrant line we call a quadrantal angle.

These statements are illustrated in the figures below. In each
case we denote by 6, and 8, the two basic angles, that is, those
angles obtained by the least possible rotation from the initial
line OX.

Given: sin 0 = 1. sing = — % tan 6 = 1.
150° 30° A 45
\
. 0 \
° X X y X
-150° =30° _Jee
Fic. 26a Fic. 26b Fic. 26¢c
Quadrants: I orII. III or IV. I or IIL.
Basic 0, = 300, 0, = — 300, 6, = 450,
angles: 6, = 150°. 6y = — 150°. 6 = — 135°.

°
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An illustration of an exceptional case is furnished by sin § = 1.
Here there is only one possible position of the terminal line, with
basic angle 6, = 90°.

To determine all the angles for which sin § = $ we need merely
to write down expressions representing all angles coterminal with
the basic angles 30° and 150°. These angles can differ from 30°
or 150° only by an integral number of complete revolutions.

If »n is an integer, positive or negative, any number of com-
plete revolutions can be expressed by n-360° or by n-27 radians.

Therefore all solutions of the equation sin 6 = } are given
by 6 = 30° + n-360° or 150° 4+ n-360°;

5
or by 6 + 2nm or —61--1— 2nr.

Here n may be any integer, positive or negative, or 0; n =0
gives the basic angles, 30° and 150°.

In the same way all angles corresponding to sin 0 = — } are
givenby 0 = —30°+n-360° or - 150°+ n-360°;
™ 5T
or by 6 = —(—5+2n1r or — =+ 2nm.

All angles corresponding to sin = 1 are given by
6 = 90° + n-360°;  or by 0=Z—;+2n7r.

Here there is only one basic angle, 6, = 90°.

To determine all angles corresponding to the equation
esc @ = 2, we note that this equation is the same as sin 0 = %
and must have the same set of solutions which we have already
found for the latter equation.

RuLE: Al solutions of either of the equations
sinf =k or csc =k
may be obtained by finding the basic angles (or the basic angle) and
increasing each of the basic angles by n-360°, or by 2nx (radians).

(Note. The basic angles will lie in adjacent quadrants, either I, II or
II1, IV as in Figs. 26a, b. If k is not a possible value of the sine functlou,
or k' of the cosecant function, there will be no solutions.)

Examples.

1. sin 6 = } = 0.33334. By interpolation from Table III, the basic
angles, to the nearest minute, are 6, = 19° 28’ and 6, = 160° 32'.
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Therefore all values of ¢ are given by
6 =19°28'+ n-360° or 160° 32’4+ n-360°.

2. csc 6 = — 3. From Table III we take the angles corresponding to
¢sc @ = + 3 and change their signs as explained in §23. We obtain
6, = — 19° 28" and 6, = — 160° 32’. All values of ¢ are given by

0 =—19° 28+ n-360° or — 160° 32’'+ n-360°,

We next consider the equation cos 8 = k, where k is any pos-
sible value of the cosine function, — 1 <k < 1.
To illustrate, we use the equations below.

Given: cosf = 1; cos 0 = —1; cosf = — 1.

\ 120% 4

> A . 180°v/$\
0 X y X 0

X

-60° -120°
Fia. 273 Fia. 27b F1a. 27c
Quadrants: I, 1V, II, 111;
Basic angles: + 60°, — 60°; 4 120°, — 120°; 180°.

All angles: £ 60° 4 n-360°; + 120° + n-360°; 180° + n-360.

We see that the rule for finding all solutions of the equation
sin 8 = k applics also to the equation cos@ =k and to the
equation scc 6 = k.

The basic angles, when there are two, again lie in adjacent
quadrants; in quadrants I, IV if k is positive and in quadrants
II, III if % is negative.

The same rule applies to the equations tan 6 =k and
cot 6 = k'

In these cases the basic angles lie in opposite quadrants unless
they are quadrantal angles; they lie in quadrants I, III if k is
positive and in quadrants II, IV if k is negative.
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35. EXERCISES 13

Obtain all solutions of the following equations. Give exact values, or
to the nearest minute.

1. sing __1_ B. csco =2. 11. cot 6 = —1.
- s V2 6 2 12. cot 9 = V3.
. CSCO = ——- .
2 £ va 1. ain o - 02001
. sinf@ = — — . sin @ = — 0. .
2 :' sec 6 = \/3 16. tan 8 = 0.6200.
- secd = - 2. 16. cot 6 = — 0.6200
3. cosf=— : ) )
2 9. tané = 1. 17. sec§ = — 1.8979.
4, cosf=1. 10. tan6 = — V3. 18. csc 6 = 1.8979.

36. The inverse function notation.

It is often desirable to refer to an angle through the value of
one of its functions. If we know that tan « = 2 we can say
“ a is an angle whose tangent is 2. If a roadway rises 6 feet in
a horizontal distance of 100 feet, we can say that the road slopes
upward at an angle whose tangent is 0.06.

The statement “ « s an angle whose tangent is 2 is repre-
sented in mathematical shorthand by one of the forms

a=arctan2 or « = tan!'2.

Either of these is a short way of writing the quoted statement.
It should be noted that the symbol ““ tan—! a” is not the same

-1 .
as (tan a)™! = ton &

The symbols are read
‘“arc tangent 2” or ‘“inverse tangent 2"
respectively. Either one represents the whole set of angles

satisfying the equation tan o = 2.
In general, in place of

tan = @ we write a =arctana or «a = tan!a;
sin a=a “ “ a«a=arcsina or a =sin"! q;
sec a =a ‘“ ¢ a =arc seca or « = sec”! a;

and corresponding equations for the other functions.

As we have seen, there is an unlimited number of such angles,
consisting of the two basic angles (or the one basic angle) and all
angles coterminal with them.

For definiteness, we single out one angle of this whole set and
call it the principal angle.
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DeriNiTION.  The principal angle corresponding to a given
value of a trigonometric function is the numerically smaller one of
the two basic angles when these angles are unequal.

When the basic angles are numerically equal but of opposite sign,
the principal angle is the positive basic angle.

The basic angles arc numerically cqual for the inverse func-
tions arc cos a and arc sec a. They arc unequal for the other
four inverse functions.

Examples.

Inverse function Bastic angles Princ. angle
o = arc sin }; a; = 30°, ay = 150°; a, = 30°,
a=arctan (—1); o = —45° ay = + 135°%; a; = — 45°,
a=arcsec (—2); o =120° ay = — 120°%; a; = 120°,
a = cos™! (0.7402; o =42°15, oy =—42°15"; oy =42°15,

Notation for the principal angle.

To indicate the principal angle we capitalize the first letter of
the symbol for the inverse function. Thus:

p.v. of arc sin @ = Arc sin a; p.v. of sin™! a = Sin™! a;

p.v. of are tan @ = Arc tan a; p.v. of tan~'a = Tan™! a.

EXERCISES 14

State the basic angles and the principal angle. Give exact answers
when possible, otherwise to the nearest minute.

3 6. arc cot (- 1). 12. tan7!(§).
L. arc sin PR 6. sin™! (- 3). 13. arc cos (— %).
2. arc cos (3). 7. tan™ (- 2). 14. tan7! (3).
3. tan-! . 8. arc sce 3. 16. sec™* (- §).
9. cos™! 0.25.
2 10. arc csc (- 2.5).
4. sec! .
see V3 11. arc sin (2).
State the exact value, or to the nearest minute.
16. Arc sin 0.3076. 21. Cos™10.1570. 26. Arc sec 2.0500.
17. Arc sin (- %). 22. Arc tan 1.8000. 27. Sec! (- #$).
18. Sin~! 0.9498. 28. Tan™! (- 1.8000). 28. Arc sec (— 1).
19. Arc cos (3). 24. Arc cot 2. 29. Arc csc 1.2150.

20. Arc cos (- 1). 26. Cot™1(0.5400). 30. Csc!(-§).
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37. Variations of the problems discussed in §34.

Example 1.
Obtain all solutions of the equation sin 2z = — 3.
Solution. Let 6 = 2x. We have to solve sin 8 = — 1. All solutions

are given by
6 =n-360°—30° and & = n-360°— 150°.
2x = n-360° — 30° and 2r = n-360° — 150°.
Therefore z = n-180°—15° and z = n-180°— 75°.
Let the student examine these values of anglez whenn = 0,n = + 1,
n=+2n=x3n==4.

Example 2.
Obtain all solutions of the equation tan 3z = 1.
Solutton. Let 6 = 3xz. We have to solve tan ¢ = 1.
Therefore 6 =n-360°4+ 45° and 6 = n-360° — 135°;
3xr = n-360°+ 45° and 3z = n-360° — 135°;
z=mn-120°+ 15° and = n-120°—- 45°
Examine these answers when n =0, + 1, + 2, + 3, + 4. Check some
of them by substituting in the original equation.

Example 3.

Solve: tan (3x — 60°) = 1.

Solution. ILet o = 3z — 60°. As in Example 2,
0 =mn-360°+ 45° and 6= n-360°— 135°
3z — 60° = n-360°+ 45° and 3r — 60° = n-360° — 135°.
3r = n-360°4 105° and 3r = n-360° — 75°.
z =n-120°4+35° and z = n-120°— 25°,

Check some of these answers.

Example 4.

Solve: sec (52 — 30°) = — 3.

Solution. Let 6 = Sz — 30°. Solve sec 6 = — 3.
Basic angles: 6, = 109° 28’ and 6, = — 109° 28'.
All values of 6:

6 =n-360°+ 109° 28" and 6 = n-360° — 109° 28'.
3z — 30° = n-360° + 109° 28’ and jz — 30° = n-360° — 109° 28’.
32 = n-360°+ 139° 28’ and iz = n-360° — 79° 28,
xz =n-144°4+ 55° 47 and z =mn-144° - 31°47.

Check some of these answers.

To illustrate the use of the inverse function notation we again
solve Examples 3 and 4.
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Example 3.
Solve: tan (3x — 60°) = 1.
Solution. 3x — 60° = arc tan 1,
3r = arc tan 1+ 60°.
x = ) are tan 14 20°.
We can now insert the values of arc tan 1 or leave the answer as it
stands.

I

Example 4.
Solve: sec (3xz — 30°) = — 3.
Solution. 5 — 30° = see™* (— 3).

3z = sec™! (— 3) + 30°.
x = %sec! (— 3)+ 12,

EXERCISE 15

Obtain all solutions of the following equations.

1. sin (2z - 30°) = 1. 6. sec (8z +40°) = — 2.
. oy _ L 6. cot (Ja +15°) = 2.
2. sin (3 +60%) = 5 7. cos (28 — 20°) = 0.2991.
- 1 8. tan (38 + 30°) = — 0.6200.
e ~-120°) = — —. 3
8. cos (5z - 1207) V2 9. sec (4 +80°) = — 1.
4. tan (4 +30°) = — 1. 10. cot (80° - 4a) = 0.

38. Given one function of an angle, to find the other functions.

- Example 1.
sinz = }. Find the other functions.
Take ordinate = 1 and distance = 2; then abscissa = = V3 (figure).

Then ~ "
V3 1
cosT =+ —, tanzxr =+ —
2’ V3
- 2
cotr =+ V3, secx =+ — 2 2
V3 1 1
esex = 2. >
V3 ¢ V3 e

We have found two values for
cach function except cse z, which is
the reciprocal of the given function. Similar results will be found in
general.  Note that the basic angles have the terminal lines shown in
the figure.

Fic. 28
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Example 2. 4
tanz=—> (=22 o £3) 3
4 +4 -4 3
The two possible positions of the _| \ 4 >
terminal line are shown in the -4 ° X
figure. \ -3
Hence sin z = + §, cosz = F ¢, )
= — == 3
cot z - ;3, cscr =+ 3, Fia. 29
secx = + g.
Example 3. A
2/ +2 -2 VT3,
cotx—g(—+—3 01'_—3~ 3
Then (figure), 2 .
. 3 2 2 -
sinr==+-——, C¢coST =1+
V13’ Vi3’ L/
tanz = %, -3
— 13
13 V13
csc:c=:t—3—, secx=iT-
F1a. 30
Example 4.
sinz = k.
Tk
Ordinate = h; distance = k; hence abscissa = + VA2 — k2,
Vi — B h .
Then cosz =+ —% tanz = + T etc.
39. EXERCISES 16
Find the other functions, given that
1. sinz = - % 6. cscz = — 42 11, csc 6 = —m.
2. cosz = %. 7. secz = — 44, 12. tané = %-
8. tanz = — . 8. cotz = — 0.8. 18. singp =1+ h.
4. secz = 5. 9. sinz=-08. 14. cot ¢ = V&-l-
B. cotz = — V3. 10. cos 6 = Va. 16. cos.p=a2+1-

16. State for what values, if any, of the literal quantities in exercises
10-15, the given equations are impossible.
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40. To express all the functions in terms of one of them.
1. Express all the functions in terms of the cosine.
We have

cosr abscissa

COST = —" =
1 distance
Hence let abscissa = cosx and distance = 1.
Then ordinate = + V/dist.2 — absc.2 = + V1 — cos? z.

The figure shows this graphically when cos z is positive.

\J1-cos® x
X >
COS X ”
1 7 2/T=cos™x

Fia. 31

.

Taking into account both values of the ordinate, we have

sinx =+ V1 — cos?z;

V1 - costz
tanr = + —————;
COS I
cOoS T
cotzr = + —————o,
V1 - cosz
1
V1 -costx
1
secr = .
COs T

Exercise 1. Draw a figure for the case when cos z is negative.

Exercise 2. Obtain the same equations directly from the formulas of
Group A.
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2. Express all the functions in terms of the cotangent.

cotx —cotx abscissa

cotx = = = h .

1 -1 ordinate
Hence let abscissa = cot z and ordinate =
or let abscissa = — cotz and ordinate =

1.
- 1.

In cither case, distance = + V'1+ cot*z. (See figure, where we

assume cot z>0.)

—-cot x

cot x
J1+ cot® x

Fig. 32

+ ————_:_—-_1::::.—:"

V1 + cot’z
cot_:y

FVitoots

Hence sin z

cosS T etc.

EXERCISES 17

1. By taking each of the functions in turn, and proceeding as above,
obtain the results shown in the following table. The given function and
its reciprocal are uniquely determined; the other four functions are am-

biguous in sign.

sin x. cos x. tan x. cot x. see T,
s r A% L2 2 1
sin ... +V1—cos?z Ea" L ._1__ A
+Vi4tantz|+ V1+cotzz sec r
cos x|+ V1—sintrl............ _1.__4.-._ Tif,; 1
+V1+tan?z[+ V1tcot? z sec.x
i +V1—costz ———
tan z GAL I - A4 P ! +Vaeer z -1 1—::
+V1—sin?z cos r cotz +Vesctr—1
V1 —8in? S ——
cot = E: 1. e L. L N Lo _l, —|+Vescrz — 1
sin r ,t\/l—cosz.t tanx i\/ﬂt‘(‘:l—l
+V1 2 .
seozl————| L |evigmeg it X
+V1—sintz cos z cot z +Vesetr—1
+ V14 tan? z
csc z 2 _1_ B e Ftan’ z +Vi+tcotrz L S N
sinz +V1—costz| tanz +Veectzr —1
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. Express cos?z — sin? z in terms of tan z.
. Express cot z csc z + csc® z in terms of sin z.
Express sin? z tan z in terms of cot z.

o pwD

Ixpress in terms of csc 6.

1+siuo+l—sin!)

cos
—-—— in terms of sec 8.
1 -tané

o

Express

41. Trigonometric equations.

A trigonometric equation is an equation which involves one or
more trigonometric functions of one or more angles and which
is not an identity. Thus:

sinx +cosz =1; tan 6+ secd = 3; cot acsca = 2.

To find the values of the angle which satisfy such an equation,
it is usually best to use a method adapted to the case in hand.
We give here one general rule, which covers a considerable
variety of cases.

RuLe: To solve a trigonometric cquation, express all its terms
by means of a single function of the unknown angle; solve as an
algebraic equation, considering this function as unknown; find the
angles corresponding to the values of the function so oblained.
Check all answers by substitution.

In this reduction we usually shall need one or more of the
identities of Group A.

Example 1.

tanxr+ tanx = 2. Solve for x.

This is a quadratic equation®* with tan z as the unknown.
Let y = tan r.

Pruy=2; +y-2=0 (y-Dy+2)=0
Therefore y=1 or y=—-2; tanx=1 or tanzr= -2,
tanz = 1: r=tan"'1 = 45°4 n-360° or — 135° + n-360°.
tanz = —2: r=tan"! (- 2) = — 63° 26’4+ n-360° or 116°34' +
n-360°.

* We recall the quadratic formula for use when one can not factor by
inspection.
~b+ V- 4ac

2 = =3
If ay* + by + ¢ =0, then y o
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Check. All these angles check because for the first set tanz = 1 and
for the second set tan z = — 2. Both of these values of tan z check in
the original equation.

Example 2.

sin?z+ cos z = 1.

Substitute sin?x =1 — cos?z; 1 — cos?z+ cosz = 1;
cos?x — cosz = 0; cosx (cosz — 1) = 0.

" Therefore cosz =0 or cosz = 1.

cosz = 0: z = arc cos 0 =%+ 2nw or — §+ 2nr.

cosz =1: z = arccos 1 = 0+ 2nr = 2nr.

Check. For the first set of angles, cosz = Oand sinz = + 1. For the
second set of angles, cosz = 1 and sinz = 0. All check.

Example 3.
tan 64 sec 6 = 3.

Transpose and square:
sec =3 — tan 6; sec? 9 =9 — 6 tan 6 4+ tan? 6.
Substitute sec?d = 14 tan? 4 and collect terms:
6 tan 9 = 8; tan 6 = 4.
6 = arc tan $ = 53° 8+ n-360° or — 126° 52’4+ n-360°.

Check. The process of squaring the members of an equation usually
introduces extraneous solutions. Thus: 2z = 1 has one solution;
4z? = 1 has two solutions. In our example the angles of the second
set, — 126° 52’ 4+ 2n» do not satisfy the given equation. For these

angles tan 6 = 4 and sec = — §.

Example 4.
2 cos 0+ sin 0 = 2.
Transpose and square:
2c080=2—sin6; 4cos?0 =4 — 45in 04 sin?6.
Substitute cos? § =1 —sin?¢ and simplify:
58in?6 — 48in 6 = 0; sin @ (5sin 0 — 4) = 0;
sin@=0 or singd=#%=08.
6 =arcsin0=0°4n-360° or 180°+ n-360°.
6 = arc sin 0.8 = 53° 8+ n-360° or 126°42'+ n-360°.
Check. The values of 6 which check are
0 = n-360° and 6 = 53° 8+ n-360°.
The other values must be discarded.
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EXERCISES 18

Solve for the unknown angle.

2sin?zr —sinz = 0.
4 sec’z = 3.
2secz =1+ tan?z.
2cos’x =1 — cos z.
tan? 6 + sec? 6 = 3.
csc? @ + cot? o = 5.
tan 0 = 2 sin 6.

. tan?60 +secd = 1.

9. 2sin?20 — 2cos?6 = 1.
10. 1 + tan?6 = 2 tano.

S ol ol ol o

11,
12.
13.
14.
16.
16.
17.
18.
19.
. 5sinz +4cosz =4

1-tan’a =2tana.
2costa—2sinta= V2
tan a — sec a = 3.
seca =1 + tan a.
2s8inf +cosf = 2.

sinf — 2 cos 6 = 2.

tan @ + 2 = 3 cot 0.
2secld =3 + 2 cos 6.
3sinz +4 cosz =5.



CHAPTER

IV LOGARITHMIC

SOLUTION OF RIGHT
TRIANGLES.*
APPLICATIONS.

PART I. SOLUTION OF TRIANGLES

42. Remarks on numerical computations.

Suppose a given quantity has the exact numerical measure N.
This might be N feet, N pounds, N bushels, and so on. Let
N = 20673, a 5-digit number.

To express this number with 4-digit accuracy, or, to 4 signifi-
cant digits, we keep the first three digits, 2, 0, 6, and round off
the 73 to 70. To express N to 3 significant digits, we keep the
first two digits, and round off 673 to 700.

(a) To four significant digits: N = 20670.
(b) To three “ . N =20700.

We follow the same plan for decimal numbers. If N =
0.020673, then

(c) to four significant digits, N = 0.02067;
(d) to three ¢ “ N = 0.0207.

But observe in this case that final zeros following the decimal point
are omatted.

* For those who have not studied logarithms, a full discussion of the
theory and use of logarithms and of the use of tables is given in Appendix
B.

52
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The statements (a) and (b) without any more exact infor-
mation about N, mean respectively that:

the exact value of N lies between 20665 and 20675;
oo oo ¢ 20650 and 20750.

Accuracy obtainable by the use of tables.

A theoretical study of this question is beyond the scope of this
book. We briefly summarize the results.

1. Tables of logarithms of numbers. In general, 4-place
tables of log N will yield N to not more than 4 significant digits;
5-place tables of log N will yield N to not more than 5 significant
digits.

2. Tables of natural or logarithmic trigonometric functions.
In general, 4-place tables will yield angles to the nearest minute,
and 5-place tables will yield angles to the nearest tenth of a
minute. Where the tabular differences are large, the accuracy
will be somewhat greater; where the tabular differences are
small, the accuracy will be less.

3. Interpolations should not bhe carried out more than one
place beyond the number of places in the table. Then round off
the result.

Examples.

1. From Table I, log 30.23 = 1.4800 + 0.3(.0014). But 0.3(.0014) =
0.00042 = 0.0004 (rounded off). Therefore log 30.23 = 1.4800 + 0.0004
= 1.4804. Here the digit 2 is not significant because 0.0014 is given
only to the fourth decimal place. We should do only as much work
as is necessary to get the nearest digit in the fourth decimal place.

2. From Table III, if cosz = 0.8650, z = 30°0’'+ }7(10). We
might calculate 13(10’) = 7.144-". But this is useless refinement be-
cause our 4-place table will yicld angles only to the nearest minute. So
we divide out to get 7.1’ and then shorten to 7’. Then r = 30° 7/,

As the student becomes familiar with the tables he will sce
that, while the statements made above are true in general, at
some places in the table the accuracy is greater than that stated,
and much less at other places. For example, cos r = 0.9998
will not determine z to the nearest minute.
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43, Logarithmic solution of right triangles.

As explained in §13, the trigonometric functions are utilized
to solve right triangles. This problem may be conveniently dis-
cussed under four cases, according to the nature of the given
parts.

1. Given the hypotenuse and an acute 8

angle. 5

2. Given a side and an acute angle.

3. Given the hypotenuse and a side.

4. Given the two sides.

The formulas to be used are:

sina=cos,8=%- cosa=sinﬁ=%
a b Aa |
tana = cot 8 = +- cot a=tanB = - b C
b a Fia. 33
a+ B = 90° ¢t =a*+ b

To calculate an unknown part when two parts of the triangle
are given select that equation which contains the unknown part
and the two given parts.

A modified form of the last equation is commonly used as a
check; its use in finding the unknown parts should be avoided.

Case 1. Given the hypotenuse and an angle, as ¢ and a.
Formulas for calculating a, b, 8.

Angle B: B =90° — a.

Side a: (El = sin a; a = c¢sin a; loga = log ¢ + log sin a.
Side b: g =cosa; b=ccosca; logh = logc + log cos a.
Check.

2=ct—a=(c—a)+a);
log b = [log (c — @) + log (¢ + a)].
a2=c-b*=(c-b)(c+1D);
log a = 3 [log (c — b) + log (c + b)].
Use that check formula which contains the larger of the two
differences ¢ ~ a, ¢ = b.,
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Example 1.
Four-place tables.
Given ¢ = 24.37, o = 82°12’. Find a, b, 8.

Angle 8. Side a. : Stide b.
8=90°—a log ¢ = 1.3869 log ¢ = 1.3869
= §7° 48", log sin @ = 9.7266-10 log cos a = 9.9274-10
loga = 1.1135 log b = 1.3143
a=12.99 b = 20.61
Check.

c—a=1138 log (c —a)=1.0561 3} sum = 1.3142
c+a=3736 log(c+a)=15723 logb=13143.

sum = 2.6284
Example 2.

Five-place tables.
Given ¢ = 24.873, o = 82°12.7. Find q, b, 8.

Angle g Side a Side b.
g=90°— a. log ¢ = 1.38691 log ¢ = 1.38691
=67°47.3". logsina=9.72677-10  log cos a = 9.92741 10
loga = 1.11368 logb = 1.31432
a = 12.992 b = 20.621

Check.

c—a=11381 log (c —a) = 1.05618 % sum = 1.31432.
c+a=237365 log(c+a)= 157246 logbd = 1.31432.

sum = 2.62864

Case 2. Given a side and an angle, as a and a.
Formulas for calculating b, ¢, 8.

Angle B: B =90° — a.
Side b: g =cot a; b =acot a;
log b = log a + log cot a.
c 1 a
Hyp. c. a sne’ ~ sina’

log ¢ = log a — log sin a.

Check. Asin Case 1.
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Example 1.
Four-place tables.
Given a = 27.32, o = 37°33'. Find b, c, B.

Angle 3. Side b. Hyp. c.
B8=90°—a. log a = 1.4365 loga = 1.4365
= §2°27’. log cot o = 0.1142 log sin a = 9.7849 — 10
log b = 1.5507 log ¢ = 1.6516
b = 36.63. ¢ = 44.83.
Check.

c—a=1751 log(c—a) =12432 }sum = 1.5507
cta="7215 log (c+ a) =18582 logb = 1.5507.

sum = 3.1014

Example 2.
Five-place tables.
Given a = 27.326, o = 37° 33.8'. Iind b, c, 5.

Angle 3. Side b. Hyp. c.
B=90°—-« log a = 1.43658 log a = 1.43658
= §2° 26.2'. log cot « = 0.11402 log sin o = 9.78507-10
log b = 1.55060 log ¢ = 1.65151
b = 36.630. c = 44.824.
Check.

c—a=17498 log (c — a) = 1.24299 1 sum = 1.55061
c+a=72150 log (c+ a) = 1.85824 log b = 1.55060

sum = 3.10123

Case 3. Given the hypotenuse and a side, as ¢ and a.
Formudas for calculating b, o, 8.

. a .
Angle a: sin @ = pt log sin @ = log a — log c.

Angle B: B =90° — a.
Side b: b =ccosa; logb = log c + log cos .
Check. As before.

A form for the computations may now be made out as in pre-
ceding cxamples.
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Case 4. Given the two sides, a and b.
Formulas for ﬁnding ¢, a, B.

Angle o: tan o = b’ log tan « = log a — log b.

Angle B: B =90° - a.

Hyp. c: c = 5]1(1L log ¢ = log a — log sin a.

Check. As before.

Solution of oblique triangles by mean of right triangles.
In the oblique plane triangle A BC we designate the angles at
A, B, C respectively by «, 8, v and the opposite sides by a, b, c.

Example 1. ¢
Given b = 12.53, ¢ = 20.63, o = 27° 24", i
Determine q, g, v

B
o
3
o
o
3
o

i
A D B
Draw CD perpendicular to AB and let AD = m. (Figure.) In right
triangle CDA we know b and « and can solve for m and p. Then in
right triangle CDB we have p and ¢ — m and can solve for a and 3.
Finally v = 180° — (a4 8).
Formulas. Check.
ACDA: m=>b cos a; p =Dbsin a. p=m tan a.
ACDB: tan g = p/(c—m); a=p/sinB. (c— m)?= (a+ p(a— p).
Solution.
log b = 1.0986-10 log b = 1.0986-10 log m = 1.0469

log cos a = 9.9483-10 log sin « = 9.6630-10 log tan o = 9.7146-10
log m = 1.0469 logp =0.7616 sum = 0.7615
log p = 0.7616
m =11.14 p = 5775
c—m =049
log p = 0.7616 logp = 0.7616 a+p = 16.88
log (¢ — m) = 0.9773 log sin g = 9.7158-10 a — p = 5.34
log tan 8 = 9.7843-10 log a = 1.0458 log (a4 p) = 1.2274
log (@ — p) —01 275
B8 = 31°19’ a=11.11. sum = 1.9549
a=27°24 isum = 09774

sum 58°43’ ¢ =180°— 58°43' = 121°17’. (ch))
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Example 2.
Given a = 351.2, o = 28°20’, 8 = 35°45’. Find
b,c, .
Draw CD perpendicular to AB. (Figure.)
Formulas.
A CDB: BD = a cos g; p = asin g.
A CDA: b= p/sin a; AD = p cot .
c=BD+ DA; v =180°— (a+ B).

The numerical solution is left as an exercise for the student.

44, EXERCISES 19

In Exercises 1-24 solve by 4-place logarithmic tables, including the
check. In each case give answers to the limit of accuracy obtainable by
the tables. Where the tabular differences are small, say less than 20, prac-
tice making interpolations mentally, without reference to the table of pro-
portional parts.

1. ¢ = 57.56; o = 64°41". 13. ¢ = 919.9; B =14°52".
2. b =2461; B =25°19". 14. 0 =889.0; «=175°8"
8. ¢ =2738; pB=31°7. 16. a = .03562; B = 48°42".
4. a =2344; «a = 58°53". 16. b = .04055; « =41°18'".
6. a =1507; o =29°31". 17. b =24.61; ¢ = 57.56.
6. ¢ =3058; B =60°29. 18. a =.1097; b =.4332.
7. b =.4332; p=21°33". 19. a =3157; b =2352.

8. ¢ =.1179; a =68°27". 20. a = 1507; ¢ = 3058.

9. a =3157; B =36°41" 21. ¢ =.0913; a = .0873.
10. b =2352; a=253°19. 22. ¢ =2738; b =1415.
11. b =.0267; o« =173°0" 23. b = .04055; a = .03562.
12. ¢ =.0913; B =17°0. 24. b = 14247; a = 12758.
In Exercises 25—40 use 5-place tables.

26. a = 23.646; « = 39°0.8". 33. b =420.72; o =29°8.2".
26. b =163.15; o = 58°35.3'". 34. b = 2081.5; a = 68324.
27. ¢ =19124; B =48°9.3". 36. a = 32.567; b = 26.873.
28. ¢ =37.562; B = 50° 59.2". 36. ¢ = 43205; o« =41°31.3".
29. a =267.15; g =31°24.7". 37. ¢ = 42.223; B =39°31.7".
30. b = .30854; c = .49267. 38. a = 12000; b =1500.

31. ¢ =481.67; a = 234.52. 39. b =32347; ¢ = 43205.
32. a =.38408; 3 = 38°46.6". 40. ¢ =120.65; B =7°5.5".

Oblique plane triangles. Solve for the three parts not given. Use 4-place
tables.

41, b =177; ¢ =217, a = 60°.
42. a =120; b = 210; v = 58°50".
43. a =160; ¢ = 236; B = 56° 46’.
44. a = 800; « = 60°%; B = 50°.
46. ¢ = 180; o = 34°45'; B = 86°25’.
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PART II. PROBLEMS IN HEIGHTS AND DISTANCES

45. Angle of elevation; angle of depression.
Let O be a point from which the line of sight to a point 4 is
clevated through an angle «, and
the line of sight to point B is de-
pressed through an angle 8, both
angles measured from the hori-
zontal line OI1. 0
Angle a is the angle of elevation
of line OA, or of point A.
Angle 3 is the angle of depres-
sion of line OB, or of point B. Fia. 34
l.et CB be drawn parallel to
OH and let h = CO be the height of point O above C.
If h, «, B are given, the lengths of all the lines in the figure can
be calculated.

A

EXERCISES

1. Obtain the following equations: —
AOCB: CB =hcotp; OB = hescp.
AOHB: OH =CB; BH = h.
A OHA: OH = CB = h cot B;
HA = OH tan a = h cot B tan a;
0A = OH sec @ = h cot 8 sec a.
2. Calculate the values of these quantities when
h =250 feet; a = 35°; B = 25°

46. Width of a river.

To determine the width of a river, w = AB, a surveyor might
set his transit at A, sight across to
L a well marked point B, turn off 90°
into the line AC, and have a stake
set at some convenient point C.

r\,t,/'?fl/- o R Measure AC = m, and from C meas-
~C m A ure Z ACB = a.
Fia. 35 Then from A ABC we have

w
m tan ¢, or, w = mtana.
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EXERCISES
Calculate w when
(a) ®) (c) (d)
m = 227 ft. 129.5 ft. 663 ft. 387 ft.
a=51°43. 31°26'. 42° 17'. 19° 33'.

Note. Logarithms should be used in these calculations. Check results
roughly by measurement of figures drawn to scale.
47. Height of an inaccessible object.

To find h, the height of a hill, (Fig. 36), choose a point A
on level ground and measure Z CAD = q, called “ the angle of
elevation.” Then approach a measured distance m on level
ground, to B; at B measure the angle of elevation 8. Now q,
B, and m are known; to calculate h.

First Solution. Let BC = n.
Then %l =cot 8, and m; "~ cot a.
e M _ . - m .
Subtracting: E = cot @ — cot B; hence h Py ——

Second Solution. Let k be the length of the perpendicular
from B on AD. Then we can calculate, in order, first k, next
BD, and finally h.

From A ABE: k =msin o

) B k sin «
From A BED: BD = sn(B—a)  "sn @ -a

From A BDC: h = BD sin 8 = mS2. S B,

sin (8 — a)

- For logarithmic cglculation this formula is much better than
the preceding. It gives

log h = log m + log sin « + log sin 8 + colog sin (B — «).
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EXERCISES

1. What does the second solution give when 8 = 2a? Explain.
2. Use both formulas to find A when

(a) (b) () (d)
a = 20° 15° 48, 27° 33, 32°18.3".
B =25° 22° 17, 41° 07, 43° 36.7".
m = 350 ft. 189.7 ft. 228.3 ft. 7447.6 ft.

Draw figures to scale and give the graphic solutions.

48. Height of an inaccessible object. Second method.

Let CD stand perpendicular to the horizontal plane MN.
To determine the height CD or h.

I'rom .1 measure £ «; if now we cannot approach C or recede
from it on account of obstacles such as trees, or a river, or other
barrier, lay off a measured distance A B = m, at right angles to
AC; at B measure £ B. .

Fig. 37

Given m, a, 8; to calculate h.

Solution. Tety = £ ACB. cosy = AC = BC.
But AC = h cot «; BC = h cot B.
COsSy = S’j)_til,
cot g8

from which ¥ may be found.
Knowing £ v and m, we can calculate either AC or BC, and
then h. Thus:

AC =meoty; h = AC tan a = m cot vy tan a.
Our scheme for logarithmic calculation would be:

log cosy = log cot @ — log cot B; v =?
log h = log m + log cot v + log tan a; h =?
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EXERCISES

1. Calculate h when m = 1575 feet; o = 32°; 8 = 19°.
2. Calculate A when m = 236.7 feet; o = 58° 16’; 8 = 40° 34'.

49. EXERCISES 20

1. A building 212 feet high casts a shadow 683 feet long. Find the
angle of elevation of the sun.

2. If an airplane glides downward at an angle of 15° with the hori-
zontal, how many feet will it descend while traveling a distance of 20,000
feet?

8. The Leaning Tower of Pisa is 179 feet high and is out of plumbh
16.5 feet. At what angle does it lean from the vertical?

4. A pole 17.25 feet long casts a shadow on level ground 25.75 feet
long. What is the angle of elevation of the sun?

6. From a battery at the top of a cliff 1537 feet above sea level the
angle of depression of a ship is 15° 10’. Find the horizontal distance to
the ship.

6. A level road makes an angle of 5° with the horizontal. How many
feet will an automobile rise in traveling 5 miles along the road?

7. Two towers stand on level ground and are 2537 feet apart. From
a point on the ground midway between the towers the angle of elevation
of one tower is 17° 35’ and of the other tower 24°48’. Find the height
of each tower.

8. From a point on level ground 340.3 feet from the foot of a tower
the angle of elevation of the top of the tower is 21° 16’. Find the height
of the tower.

9. If a flag pole 15 feet high surmounts the tower of Exercise 8, find
the angle of elevation of the top of the flag pole from the same point that
is used in that exercise.

10. Two sides of a parallelogram are 55.23 feet and 41.88 fect long
respectively and their included angle is 115° 37.2’. Find the altitude
drawn to the longer side. Find the area of the parallelogram.

11. The hypotenuse of a right triangle is 500 feet long and one of its
acute angles is 28° 32’. Show that the perpendicular from the vertex of
the right angle to the hypotenuse is 209.83 feet.

12. If in Exercise 11 the hypotenuse is ¢ and the angle is «, show that
the perpendicular is ¢ sin « cos a.

13. Calculate the perimeter and area of a regular decagon circumseribed
about a circle whose radius is 124.5 inches.

14. The equatorial radius of the earth being taken as 3956 miles, find
the radius and the circumference of the 40th parallel latitude. Find the
radius of the arctic circle.

16. From a point in the same horizontal plane with the foot of a tower
" the angle of elevation of its top is 11°29’. From a point 100 ft. nearer
to the foot of the tower the angle is 13° 18’. Find the height of the tower.

Ans. 144.5 ft.
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16. ¥rom one bank of a river the angle of elevation of the top of a tree
on the opposite bank is 40°22’. On moving back 120 ft., the angle of
elevation is 29°37’. Find the height of the tree and the width of the
river.

17. At a certain point in the same horizontal plane with the foot of a
column 25 ft. high, the angle of clevation of its top is 50°. What will be
the angle of elevation at a point 15 ft. farther away? Ans. 34° 48'.

18. A column 75 ft. high stands on a pedestal 25 ft. high. From a
certain point on the ground in the same horizontal plane with the foot of
the pedestal, the latter subtends an angle of 15°. What angle does the
column subtend at this point? Ans. 31° 58.5'.

19. A vertical pole 30 ft. long, and standing on level ground, casts a
shadow 50 ft. long. What will be the length of the shadow when the sun
is 10° higher?

20. From a point on the bank of a river the angle of elevation of the
top of a tree on the opposite bank is 38° 52’; from a point 200 ft. straight
back from the bank the angle of elevation is 19°26’. Find the height of
the tree and the width of the river. Also give graphic solution.

21. From a point A on level ground due south of an airplane, its angle

of elevation is 41°12; from a point B 1000 feet due east of A, the angle
of elevation is 36° 41’; how high is the airplane?



CHAPTER

V PROJECTION

OF LINE SEGMENTS.
VECTORS.
APPLICATIONS.

50. Projection of line segments.

Let PQ be a segment of a straight line and let A B be another
straight line. The projection of segment PQ on line AB is the
segment MN of line AB contained between the feet of the
perpendiculars dropped from P and Q on AB. (Fig. 38.)

Along line HK we shall regard the direction from P toward Q
as positive. Along line AB either direction may be chosen as
positive. We choose it in the direction from A toward B.
Positive directions may be conveniently indicated by arrows.
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The angle between segment PQ and line AB will be taken as
the angle between their positive directions, measured counter-
clockwise from A B as initial line and with PQ (or PQ produced)
as terminal line. Designate this angle by 6.

In Fig. 39 PR is drawn parallel to AB and 8 = angle RPQ. In
Fig. 40 PT is drawn parallel to AB and 8 = angle TPQ, an obtuse
angle. Line PT produced to the left to meet NQ determines
PR.
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Let I be a positive number which measures the length of seg-
ment PQ. Then we have the formula

0))] MN = 1cos 0 = projection of PQ on AB.

Analysis of this formula.

In Fig. 39, from A RPQ, PR = lcos 8. Angle 8 is in the first
quadrant, cos 8 is +, I is +, thercfore PR comes out +. The
arrow on PR points in the positive direction of AB. Also
MN = PR and is positive.

Let segment PQ rotate about P until § = 90°. Then R coin-
cides with P and N with M. PR =0 and MN =0. The
formula gives MN =1 cos 90° = 0.

When 6 passes 90°, cos 6 becomes negative, as do PR and MN.
(Fig. 40) When 6 = 180°, MN = lcos 180° = — . In the third
quadrant cos 6, PR and MN remain negative; in the fourth
quadrant all are positive.

Therefore our formula gives the projection of PQ on AB both
as to length and sign.
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In later work we shall need to project a given line segment on
each of two mutually perpendicular lines.

Let these lines be OX and OY (Fig. 41) with positive direc-
tions as shown by the arrows. Let PQ be a given segment,
making angle 6 with OX.

Let MN be the projection of PQ on OX and EF its projection
on OY. Then

(1) projection of PQ on OX = MN =1 cos 6;
(2) projection of PQ on OY = EF =1 sin 0.
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Analysts of equation (2).
The figure shows 8 to be an acute angle and A PRQ gives

lcos@ = PR = MN.
lsin § = RQ = PT = EF.

These are equations (1) and (2) for angle 8 acute. We have al-
ready shown that (1) remains true when 6 varies from 0° to 360°.
In exactly the same way we can show that equation (2) is true
for all values of 6. This is left as an exercise for the student.

EXERCISES 21
Calculate the projections of PQ on OX and OY:
1. PQ =100; 6 = 0°, 30°, 45° 60°, 90°, 150°, 240°, 270°, 300°.
w r w 2r 9r l4r
2. PQ = 100; g=5,§,:_7, 3 T T
3. PQ =356.2; 0 =40°15"; 6 = 205°23', 6 = — 40° 15'.
4. PQ = 0.036825; 60 = 130°45.3'; 6 = — 130° 45.3".

51. Vectors and their components.
DEFINITIONS.

A vector s a directed line segment.

In Fig. 42, PQ is a vector, P is its initial point and @ is its

YA terminal point or end point.
T Q Through initial point P draw
L a line in any desired direction
% and project PQ on that line.
P R This projection of PQ is the
~__ component of vector PQ in the de-

X sired direction.

If two mutually perpendicular
reference lines OX and OY be chosen, and lines parallel to them
be drawn through P, the projections of PQ on these lines are PR
and PT respectively. Then

Fic. 42

PR is the z-component of vector PQ;
PT is the y-component of vector PQ.
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Then for all values of 8 we have (§50)

(1). x-component of vector PQ = PR =l cos 0;

(2). y-component of vector PQ = PT = lsiné.
Also:

(3). length of vector: P = PR? + PT? = sum of squares of

components.
. RQ PT y-component

(4). angle of vector: tan 6 = PR - PR - W—t-

Note. Point O may be taken at P, the initial point of the
vector PQ; then OX falls on PR and OY on PT. This is done

in the following section.

52. Sum of vectors. Parallelogram law. Resultant.

Problem. An airplane flies 125 miles in the direction E 34° N,
then 150 miles in the direction E 62° N. How far and in what
direction is the planc from its starting point?
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The data are shown in Fig. 43. Vector AB has I, = 125,
6, = 34°; vector BC has l; = 150, 6, = 62°.

Required: [ and 6 for vector AC.
Calculate:

AH = z-comp. of vector AB =1, cos 6 = 103.6 mi.
BL = z-comp. of vector BC = [, cos 6, = 70.4 mi.
AK = z-comp. of vector AC = AH + HK = 174.0 mi.

Similarly:
KC =KL + LC = HB + LC = 69.9 + 132.4 = 202.3 mi.
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Knowing the components of vector AC we find ! and 6 by
(3) and (4) of §51.

Exercise. Show that I = 266.9 miles; 6 =49° 18".

Sum of two vectors. In Fig. 43 vector AC s called the sum of
vectors AB and BC. As an equation we write vector AC = vector
AB + vector BC. When two vectors are added the final point of
the first vector is taken as the initial point of the second vector.

Resultant of two vectors. In Fig. 43 AB’ is drawn parallel to
and equal to vector BC. Then the components of A B’, regarded
as a vector with initial point A, will be equal in length and
direction to the components of vector BC. Therefore the com-
ponents of vector AC may be obtained by adding the corre-
sponding components of vectors AB and AB’. Vector AC 1is
called the resultant of vectors AB and AB’.

Vector AC is the sum of vectors AB and BC, which are placed
end to end; it is the resultant of vectors A B and A B’ which start
from the same initial point.

Parallelogram law. Vector AC is the diagonal of a parallelo-
gram constructed on AB and BC, or on AB and AB’, as sides.
This is known as the parallelogram law.

In the following exercises a vector is indicated by the symbol
{, 6), where l is the length of the vector and 6 is the angle which
it makes with a selected initial line.

EXERCISES

Find the sum of each pair of vectors. Draw figures to scale.
1. (125, 34°) and (50, 62°). 5. (40, 240°) and (60, 120°).
2. (125, 34°) and (150, 120°). 6. (40, 240°) and (60, 30°).
3. (100, 60°) and (50, 150°). 7. (75, 300°) and (80, 225°).
4. (25, 145°) and (40, 210°). 8. (225, — 60°) and (125, 90°).

9. In these exercises would the answer be changed by reversing the
order of the vectors?

10. How would the resultant of any pair of these vectors compare with
their sum?
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53. Velocities as vectors.

Suppose a ship to be moving at the rate of 20 knots an hour
in the direction E 40° N. Sce Fig. 44. Let A mark its position
at any moment and draw the directed line segment AB with
! = 20 and 6 = 40°, choosing a convenient scale for I. Then AB
is a vector showing both the speed and the direction of motion

of the ship.

20

°

40

Fra. 44

Note. Velocity is commonly used to include both speed or rate of mo-
tion, and direction of motion.

As a second example consider an airplane flying at 200 miles
an hour in a direction S 60° W. The vector diagram is shown
in Fig. 45.

210%-
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200~ €0
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B Y
Fic. 45

In both figures we shall consider east and north as the positive
directions along the reference lines. Angle 6 is to be counted
from the easterly direction as initial line. In Fig. 44, I = 20,
0 = 40°.

The components of vector AB are:

Fig. 44: AE = 20 cos 40° = 15.32 knots per hour,
AN = 20 sin 40° = 12.86 knots per hour.

Fig. 45: AW = 200 cos 210° = — 173.2 m.p.h.
A8 =200 sin 210° = — 100.0 m.p.h.

I
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Note that, when the initial line points east:

components to the east or north are counted positive;
components to the west or south are counted negative.

Resultant of two velocities. Ground speed of airplane.

Problem. An airplane is traveling with an airspeed of 120
m.p.h. and heading E 50° N and the wind is blowing at 40
m.p.h. in direction N 20° W. Calculate the groundspeed and its
direction.
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(Airspeed = speed relative to the air. Groundspeed = speed rel-
ative to the ground.)

Starting from A, in one hour the engines would drive the plane
from A to B while the wind would carry the plane from 4 to C.
The plane follows the intermediate path AD and in one hour
arrives at D. Vector AD, the distance covered in one hour rela-
tive to the ground, is the groundspeed.

EXERCISES 22

1. Asin §52, calculate ! and 6 for vector AD, taking eastward as 6 = 0.
Calculate the groundspeed and direction from the data below.

Airspeed Heading Wind Direction
2. 125 m.p.h. N 60° E 24 m.p.h. N 45°W
3. 200 N 25°E 20 N 60° E
4. 180 S 50° 30 N 65°W
6. 150 N 40° K 18 N 30°W
6. 140 S 55°W 22 N 70°W
7. 220 S 35°E 25 N 40°'W
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54. Forces as vectors.

Suppose a particle at 4 to be pulled upon by several forces,
all in the same plane, as AF,, AF,, AF;, AF, in the figure. Here
each force is represented by a vector, showing the amount and
direction of the pull.

What must be the amount and direction of a single force

Fic. 47

which is equivalent to the four given forces? This is called the
resultant of the given system of forces.

DeriNITION. The sum or resultant of any number of co-planar
forces is a force such that
its z-component = sum of z-components of the given forces;

its y-component = sum of y-components of the given forces.

Solution. Resolve each force into an x-component and a y-
component. This is done by the formulas

z-component = [force| X cos «;

y-component = |force] X sin «;
here |force| denotes the magnitude of the force or the length of
the vector which represents the force, and « is the angle between
OX and AF, measured in the counter-clockwise direction. Thus
for AF,, a = 330° nearly.

Form the sum of the z-components, each with its proper sign,

for a “ total z-component.” Similarly for the y-components.
Then

Amount of Resultant Force =

V/(total z-comp.)? + (total y-comp.)?;
_ total y-component
~ total z-component’

Angle of Resultant Force: tan «



72 PROJECTION OF LINE SEGMENTS

EXERCISES 23

Calculate the resultant of each of the following systems of co-planar
forces acting at a point. Draw accurate figures.

1. (30 1b, 25°); (40 Ib., 50°).

2. (25 1b., 40°); (18 Ib., 70°); (35 lb., 160°).

8. (751b., 65°); (60 lb., 130°); (85 Ib., 230°); (40 Ib., 340°).

4. Show that the resultant of two forces is represented by the diagonal
of a parallelogram whose sides represent the two forces. (The parallelo-

gram law.)

55. Plane surveying.
This subject furnishes further applications of the use of vec-
tors and their components.
Suppose a surveyor to start from A and run the following
lines:
Bearing Distance
A to B, N 70° L, 345 feet;
BtoC, N25°W, 288 feet;
CtoD, S 72°W, 467 feet;
DtoE, S 12°W, 424 fect.

How far and in what direction is he now from his starting point?

Fia. 48

In the figure each line is represented by a vector of proper
length and direction. Scale: one division = 50 feet. We must
determine the length of AE and its direction.
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To do this we calculate the north-south component of each line
and add them algebraically to get the north-south component
of AE. These components are counted positive when the end
point of the line lies to the north of its initial point; otherwise
negative. The east-west components are treated similarly;
they arc counted positive when the end point of the line lies to
the east of the initial point of the line.

DEFiNITIONS. The angles of the lines are measured from the
north or the south, so that they will be acute angles. They are called
the ““ bearings” of the lines. The distance run, or length of the
vector, is called the “ distance,”’ and vs assumed to lie in a horizontal
plane.

Also

the north-south component of a line is called its “ latitude 7’;
the east-west component of a line is called its  departure .

Then we have

latitude of a line +
departure of a line = +

Also

latitude of AE algebraic sum of latitudes of lines run;
departure of AE = algebraic sum of departures of lines run.

(distance X cosine of bearing);
(distance X sine of bearing).

Distance AE = V/(latitude of AE)? + (departure of AE)?;

latitude of AE

Bearing of AE: tan sAE = | 4o e of AE |

where the vertical bars mean that the enclosed quantity is to be
taken positively.

When a surveyor runs a closed traverse, starting at a given
point and ending at the same point, the sum of the latitudes of
all lines run should be zero, as also the sum of all the departures.
This furnishes a check on the accuracy of the measurements.
Exercises 2 and 3 below contain data from surveys of closed
traverses.
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Exercise 1. Calculate the latitude, departure, length and bearing of
AE from the data given above. A figure drawn to scale may be measured
to get approximate results.

Exercise 2. Check the computed latitudes and departures.

Line Bearing Distance Latitude Departure
(feet) N S E w

E-F S 6°44'E 279.15 277.21 32.73

F-V NM°30'W 153.27 89.00 124.78

V-U 8S16°22'W 120.17 115.29 91.25

U-M N23°13W 23147 212.73 33.86

M-E N672UVE 23542 90.66 217.26

+392.39 —-392.50 +249.99 —249.89
Error: — 0.11 ft. Error: + 0.10 ft.

Exercise’3. Calculate the latitudes and departures.

Line Bearing Distance
(feet)
A-B S 86°17 W 267.23

B-C N 14°57 W 228.15
C-D N 0°54E 261.72
D-E S 89°48' 1 134.53
E-F S 2°03' B 230.43
F-G S 85°04' 1 174.46
G-A S 1°18 B 219.07

56. Plane sailing.

The problem of plane sailing in navigation is essentially the
same as the problem in plane surveying just treated. The sur-
face of the ocean is considered as a plane.

DeFINITION. The angle between the direction in which a ship
18 headed and the meridian passing through the ship’s posttion s
called the course of the ship. When measured from the nearer
part of the meridian so as to be an acute angle, it corresponds ex-
actly to bearing in surveying. (See also §139).

Other clementary problems in navigation relate to the deter-
mination of the distance at which a ship, sailing a known course,
will pass an observed object such as a lighthouse.

The term ‘ bearing” which occurs in the exercises below
means “ bearing off the bow,” that is, the angle between the line
from ship to object and the direction in which the ship is
headed. When the bearing is 90° the object is ‘“on the beam.”
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EXERCISES 24

1. A ship leaves Boston Light and sails S 75° E, 25 miles; then N 70° E,
40 miles; then N 35° I, 60 miles. In what direction should she now sail
to return directly to the starting point? Ilow far will she have to go?

2. A ship, sailing on track AB, is at A when the navigator observes
the bearing of a lighthouse L to be 45° off the port bow; that is, the angle
between the direction in which the ship is sailing and line AL is 45°. At
what distance will the ship pass the lighthouse?

Ans. The distance sailed while the bearing increases from 45° to 90°.

3. A ship running on line AB is at A when the navigator observes the
bearing of a lighthouse L to be 26.5° off the
port how. After a run of 5 miles the bearing L
has increased to 45°. Show that the distance
at which the lighthouse will be passed is 5 miles
very nearly. In gencral, if AB = m, also BC = °
m and CL = m, very nearly.
4. In Exercise 3 if AB = BC = CL, then
tan BAL = 1. Why? Ilow close is this to 26.5°?
6. A ship is running on line AB at 18 knots per hour. At A4 the navi-
gator measures the bearing of lighthouse L to
be 25°. Ten minutes later, at B, the bearing L
is 50°.  How far is the ship from L at the
time of the second bearing? At what distance
will the ship pass the lighthouse? °

F1a. 49a

6. Solve Fxercise 5 when angle CAL =
angle CBL = 2a, and distance sailed AB = m.
This method of finding CL is known as the Fig. 49b
“double angle method.”

7. If, in the figure of Fxercise 5, angle CAL = 30°, and, 20 minutes
later, angle CBL = 50°, find CL.

8. If, in the figure of Exercise 5, angle CAL = o, angle CBL = 3, v is
the speed of the ship in knots per hour and ¢ the running time from A to B
in minutes, find CL.

9. If a landmark is observed 221° off the bow, and later 45° off the
bow, show that the mark will be passed at distance approximately cqual
to seven tenths of the run of the ship between bearings. How accurate is
this “seven tenths rule"”?

10. If the first bearing is 20°, what must be the second bearing so that
the “distance passed” shall be one half the run of the ship between bear-
ings? Ans. 53° nearly.

11. A lighthouse tower rises 150 feet above sea level. There is shallow
water out to a distance of 5160 feet from the tower. A navigator from his
bridge 30 feet above sea level observes the angle of elevation of the light
to be 1°10’. How far out from the shoal is his ship?
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57. Simple waves.
The graph of the function
Yy =sinz

is a wave curve of the simplest type, as shown in the figure on
p- 19.

Such a curve may be altered in several ways without destroy-
ing its simple wave form. We may change

(a) the height of the crests, or amplitude of the wave;

(b) the length of the wave;

(c) the phase of the wave, depending on where it cuts the z-axis.
In this way we would get a wave like that in the following

figure, where the original sine wave is shown for comparison.
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Full line, y =15 sin (3z —4). Dolted line, y = sin z.
Amplitude = OM = 1.5. Amplitude = 1.
Wave length = LN = 2% radians. Wave length = 27 radians.
Phase = OL = 4 radians. Phase = 0.

The most general expression for the simple wave which results
-when the above changes have been made in the wave for sin z is

y = k sin (az + b).
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Example.

y = 1.5 sin (3z — 4). (See preceding figure.)

(a) The amplitude. The greatest value of sin (3z — 4) is 1, since the
sine function cannot exceed this value; hence the greatest value of y is
1.5. This shows the height of the wave; that is,

amplitude = 1.5.

(b) The wave-length. This is determined by finding the points where
the wave crosses the z-axis. These are marked by the values of x for
which sin (3z — 4) = 0. But this is zero when the angle (3z — 4) is an
integral multiple of =;

sin(3r —4)=0 if 3x—4=mnr, or z = mr; 4 radians,
where m is any whole number.
Puttingm =0, 1, 2, 3, . . . , we get the successive crossing points:
4 4 27+ 4 3r+4
:co=:—3v;:c1=—-7r'_§ ; To= W;' ; T3 = ";_ ; ete.

These values in degrees are, very nearly,
o = 76.4°; x, = 136.4°; x, = 196.4°; z; = 256.4°; etc.
The distance between alternate crossing points, as xo to z., is the
wave-length:

_ _2r+4 4 2 i
wave-length = z, — 2, = 3 33 radians.

This is one-third of the wave-length of the fundamental sine wave.

(¢) The phase. This marks the beginning of the first complete wave.

Hence
phase = z, = OL = { radians.

In general, for the wave y = k sin (ax + b),
amplitude = k;

wave-length = 2;" radians;

phase = — g radians.

EXERCISES 25
Draw the following waves, showing each in comparison with y = sin z.
1. y =2sin(z - 1). 8. y =2.5sin (2z + 3).
2. y = 3sin (22 - 3). 4. y = 4sin (3z — 60°).
6. Prove the statements made above regarding y = k sin (az + b).
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6. Draw the graph of e = 110 sin (2407t — «).

This equation describes the rise and fall of the electromotive force at a
fixed point in an ideal alternating current circuit.

Here e and ¢ take the place of y and z; e stands for electromotive force
in volts, ¢ for the time in seconds. Show that the greatest value of the
electromotive force is 110 volts, and that there will be 120 vibrations per
second.

In drawing the graph, use care in the choice of scales. Thus on cross-
section paper, one square of the vertical scale might be taken to represent
10 volts, and 10 squares of the horizontal scale might be taken to repre-
sent 1}y seconds.

58. Simple harmonic motion.

Consider a point M to move on the circumference of a circle
of radius r; we sce that, as M moves around the circle, its pro-
jection M’ moves back and forth along AC.

B
M
.
0
C 0 M7 A
D
Fia. 51a

When 6 = 0, M and M’ are together at A. Then, if we sup-
pose 6 to increase uniformly, M will move around the circle with
uniform speed; but M’ will move along AC with variable speed,
slowly at first, then faster until it reaches O, when its speed will
be greatest, then more slowly until it reaches C, where it will
come to rest and start back toward A. This type of motion is
called simple harmonic motion.

A body which has this motion vibrates back and forth past a
middle position with variable speed. The distance of the body
from its mid-position is called its displacement. From the figure,

displacement of M’ = d = OM’ = r cos 6.
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When 6 = 0, d reaches its greatest value r, which is called the
amplitude of the vibration.

If we measure 8 from some other fixed radius OA’ in place of
OA, we shall have

d =rcos (0 + ).

The greatest value of d is now rcached when 6 + a = 0, or

when 6 = — «; this angle is called the phase of the vibration.
B
M
v A’
[
C 0 M A
D
Fra. 51b

If we suppose the angular speed of the radius OM to be w
radians per second, and ¢ to represent the time in seconds elapsed
since M was at A, then 6 = wf, and

d = rcos (wt + a).
This is an equation of the type
y = k cos (ax + b),
and, like the equation
y = ksin (ax + b),

is represented graphically by a simple wave curve.

EXERCISES 26
Describe the motion of point M’ when d is as follows.

1. d=2cosl. 4. d =5 cos 2nt.
2. d =3 cos 2. 6. d = 10 cos (=t + 45°).
3. d =5 cos =t. 6. d = 10 cos (2=t + 45°).



CHAPTER

VI SMALL ANGLES.

THE MIL UNIT.
APPLICATIONS.

59. Use of small angles.

Consider a chord PQ of a circle of radius 7. ILet the length of
the chord be small as compared with the radius of the circle.
Then the central angle, 6, subtended by the chord will be small
also.

F1a. 52

We shall study the explanation of such a result as is given in
the following problem.

Problem.

QP is a distant ship known to be 200 feet long. It subtends an angle
of 1° as seen from 0. How far away is the ship?
Ans. 57.3 X 200 = 11460 ft., very nearly.

Ezxplanation. In §29(a) we have the relation between radius, are,
and radian measure of the central angle:

1) arcQP =rX 0, or r=%x arc QP.

If angle 6 is small, arc QP will be nearly equal to chord PQ. Replacing
arc QP by chord QP we have the approxzimate relations

(2) chord QP =rX 6, or r= %X chord QP, approx.
80
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5—71—3 radians, and chord QP = 200 feet, we have

r = 57.3 X 200 = 11460 feet, approximately.

Taking 6 = 1° =

In the next section we shall see how to obtain an estimate of
the accuracy of this approximation. We shall find there that,
if we use chord PQ in place of arc PQ,

the error in r is about 25 feet per mile if 6 = 10°;
the error in r is about 6.5 feet per mile if § =
the error in 7 is about } foot per mile if § =

The following special cases of (2) may be noted.

3) 6=1°= 371—3 radians; r = 57.3 X chord QP, (approx.).

“) 6=mn 3713 radians; r = §7—3 X chord QP, (approx.).

B) e6=1= 34%0 radians; r = 3440 X chord @P, (approx.).

(6) 0=n"= 34720 radians; r = ‘}é@ X chord QP, (approx.).
Example.

A flagpole 12 feet long subtends at O an angle of 2° 30, point O
being on a perpendicular bisector of the pole. How far is the pole
from O?

Using formula (4) with 6 = 2° 30’ = 2.5°, we have

57.3

=55 X 12 = 275.0 feet.
Using formula (6) with 6 = 2° 30’ = 150", we have
3440
=150 X 12 = 275.2 feet.

A right triangle solution with 5-place logarithms gives r = 275.04 feet.

EXERCISES 27

1. A chimney 40 feet high subtends an angle of 3°. How far away is
the chimney?

2. A building 300 feet long viewed from a point at right angles to its
length subtends an angle of 1°45’. How far away is the building?

8. At what distance from the building in Iix. 2 would the subtended
angle be 2°?

4. A lighthouse tower 40 feet high subtends at a ship an angle of 30'.
How far is the ship from the lighthouse?
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6. A textbook on navigation states that a certain light, 167 feet above
sea level, will subtend an angle of 19’ at a distance of 5 miles. Check this
statement. (See Ex. 4, §31.)

6. How many minutes in the angle subtended by a target 1 yard in
diameter when viewed from a distance of 1000 yards?

7. How many minutes in angle 6 if »r = 1000 QP? (TFig. 52)

8. Show that a ball, viewed from a distance equal to 57 times its
diameter, will subtend at the eye an angle of nearly 1°; at a distance of
3400 times the diameter the angle will be very nearly 1/; at a distance
of 206,000 times its diameter the angle will be almost exactly 1”.

9. At what distance from the eye will a baseball subtend an angle of
1°? Of 1’? Of 1”? (Diameter of bascball = 2.9 in.)

10. The moon’s diameter is 2160 miles, the sun’s 866,000 miles. Their
distances from the earth are 240,000 miles and 93,000,000 miles respec-
tively. What is the angular diameter of each body as viewed from the
earth?

11. TIs the end of a lead pencil, held at arm’s length, sufficient to cover
the disk of the full moon? Moon’s angular diameter is 32’.

60. The limit of the ratio s";a-
In a circle of radius r (Fig. 53) let QP be a chord, QNP its arc,
2« its central angle, and ST a segment of the tangent line at N.
From geometry, the length of the arec QNP is greater than
the chord QP and less than the tangent ST. Taking half of
each of these lengths we have

MP < arc NP < NT.
Dividing by r:

paT
MP _arce NP _NT '
r r r
But MP _ sin a; ° I
a_rcr_NP = a (radians); e
NT NT
— “on ~tane Fro. 53

Therefore, a being an acute angle measured in radians,

sin ¢ < a (radians) < tan a.
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Example.
a=10°% sina=0.1736, « = 0.1745, tan« = 0.1763.
Dividing the preceding incqualities by sin a,

a 1
1 < = < *
SN o COS «

As angle « approaches 0,

approaches 1, and the intermediate
cos «a

quantity, ﬁ, must likewise approach 1. Also the reciprocal quantity
SN «
sin
% must approach 1.
a
\ .. . sin « .
TuroreM. The limit of the ratio ——, as a approaches 0, is 1,
(83

a being measured in radians.

. . .osina .
CororLLARY. When angle a 7s quite small, the ratio —— will
«

differ only slightly from 1.

We may therefore write
sin «

=1 — e, where e is a small positive number,
(24

and

sin @ = a — ca.
If we neglect the small quantity ca, we have
sin @ = a (radians), approximately.

If « is a small angle, sin a and radian measure of a are ncarly
equal.

From tables we can take the values of @ and sin « and calculate
e. We find, in round numbers,

1 . y — ]
€ = 547 APPLOX. when a = 10°,
e =—1—a) rox. when a = 5°
800 I p . b
e = _ L approx. when a = 1°
20,000 PPTOX- :
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Up to 5° the values of a (rad.) and sin « are so nearly equal
that we can use them interchangeably in many applications. It
amounts to replacing a short chord of a circle by its arc or vice
versa, because, in Fig. 53, r sin « is the half-chord and ra the
half-arc.

In the problem of §59 we had chord QP = 200 feet, 6 = 1° =

radians. Now arc QP = rf. Replace arc QP by chord QP;

”7 3
then
1
200 = r- 5y
r = 57.3 X 200.

The error in r due to using chord QP in place of arc QP is about
1 part in 20,000 or 11,460 + 20,000 = 0.6 foot. There is of

course also a slight error due to the use of 57.3 in place
of 120

03

The limit of the ratio tan

If we divide the inequalities
sinae < a < tan «

by tan a, we obtain

COSa<—a—< 1
tan a

Trom these inequalities we derive, by the reasoning used
above, the following theorem.

TareoREM. The limit of the ratio tan a, as a approaches 0, is

1, a being measured in radians.

will

CoroLLARY. When angle a is quite small, the ratio tan o

differ only slightly from 1.

We may therefore write
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tan o

=1 + ¢, where e is a small positive number;

or,
tan a = a + ea.

If we neglect the small quantity ea, we have

tan a = « (radians), approximately.

If o is a small a'ngle, tan a and the radian measure of o are
nearly cqual.

The values of e for @ = 10°, 5°, 1°, respectively, are practically
the same as those stated above for sin a.

Values of S and T. For small angles, less than 5°, the values of
log sin « and of log tan « can not be obtained accurately by
interpolation in the tables. To obtain more accurate values, the
preceding approximations for sin « and tan « arc used. We con-
sider first the case of sin «, when angle o is small and is expressed
in minutes.

If @ represents the number of radians in our angle and o' the

number of minutes, we have o = o', and thercfore

T
10800

sina = a = o', approximately.

_T
10800
Therefore
. , T B
log sin o = log o’ + log (————10800), approximately.
If we write

log sin a = log &’ + S,

the value of S will differ only slightly from log ( Itis

10800)
tabulated in Table II of Appendix B. To find the value of
log sin @, when « is a small angle, add S to log &'.
In the same way we obtain
log tan @ = log &’ + T,
where the values of T are likewise tabulated.
If a small angle is given to seconds we would proceed as above,

but start with the relation a = @—gma” and use the corre-

sponding values of S and T'.
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61. The mil unit of angle.

(I) If the circumference of a circle be divided into 6400 equal
arcs, each arc will be equal, very nearly, to one onc-thousandth
part of the radius. The length of one such arc is equal to

circumference  2mr 7
6400 ~ 6400 ~ 1000’

very nearly.

. r . .
A more accurate value is 1018.6’ but for practical appli-

cations the divisor 1018.6 is rounded 1600

off to 1000. This introduces an error - 20

of about one part in 50, or 29. 800
The central angle subtended by

an arc equal to one 6400th part of {00

the circumference is called a mil. It

is the standard unit of angle in the o

artillery service. 1600 mils = 90° }
We have then Fia. 54

6400 mils = 360°
1600 mils 90°

1 mil = %q—) minutes = 3} minutes.

27 radians.
a quadrant.

I
1

For practical purposes we regard the mil as the central angle
whose are (or chord) is one 1000th part of the radius.

(I1) Applications involving small angles.

According to the definition of the mil the following statements
are approximately correct.

1) A target one yard in diameter and 1000 yards distant from
a gun will subtend at the gun an angle of 1 mil, very nearly.

2) A target D yards in diameter and 1000 yards distant
from a gun will subtend at the gun an angle of D mils, very
nearly.

3) A target D yards in diameter and r yards distant from a gun

. D .
will subtend at the gun an angle of 71000 mils, very nearly.
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The last two statements are quite accurate for angles up to
100 mils or 5.6°. Statement 3) may be written in the form
diameter of target

range + 1000 '

3) mils subtended at gun =

If we let M represent the number of mils, D the diameter of
target in yards, r the range in yards, and R the range in thou-
sands of yards so that B = r + 1000, we have

) D D R
3) M=Tf’ R=M, D =MR. G<@D

Examples.

(a) How many mils will be subtended by a target 65 yards in diame-
ter when the range is 2750 yards?

M-
2.750

(b) What is the range when a target known to be 45 yards in diame-

ter subtends an angle of 21 mils?
R =1} = 2.143; r =range = 2143 yards.

= 24 mils.

EXERCISES 28

The first three exercises may be used for oral drill.  Use should be made
of the short cuts of arithmetic.

1. Determine M. 2. Determine r. 3. Determine D.

D r D M r M

1) 5 1000 15 5 2000 16
2) 25 10,000 15 6 4000 22
3) 20 8000 24 32 1800 15
4) 60 7500 40 12 1750 36
5) 40 6000 60 25 2250 60
6) 30 2500 90 36 3200 45
7 15 1750 100 30 1625 54
8) 75 2450 72 27 2745 8
9) 125 3750 155 75 1275 64
10) 95 3800 120 32 2125 88

4. In Fig. 52, if the gun is at O and chord QP is the target,

QP . w1, 3QP
7= 1000 approx.; sin 30 = ;.

Take QP = 180 yards and r = 2000 yards; calculate 6 from each of these
equations and compare results.

6. State which of the following equations arc exact and which are ap-
proximate; where approximate, give the exact value.
(a) g radians = 800 mils; (c) 1 degree = 17.78 mils;
(b) 160 mils = 9° (d) 1 radian = 1000 mils.
)

0 (mils) = exactly.
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6. What is the distance to a ship which is known to be 300 feet long
and which subtends an angle of 20 mils when viewed broadside on?

7. What angle in mils is subtended by a building 180 feet long when
viewed broadside on from a distance of 1500 yards?

8. What angle is subtended at a target by a battery front of 80 yurdé,
the target being 2400 yards distant in a direction perpendicular to the
center of the battery front?

9. If a gun is sighted at a tree 2400 yards away and if a concealed
target is known to be located 75 yards to the right of the tree, through
what horizontal angle must the gun be deflected to bear in the direction
of the target?

10. If the four guns of a battery are mounted at the vertices of a square
50 yards on a side and if a target is in line with one diagonal of the square
and 2500 yards from its center, what angle is subtended at the target by
the other diagonal of the square?

(ITI) In the artillery service the mil is used when angles are
not small enough to permit the use of approximate methods.
A brief table, Table B, to be used with the mil as argument,
appears on page 89. The circular and radian values of the
angles have been added merely for comparison.

EXERCISES 29

Determine angle M.

(a) (b) (e) (d) (e)
1. sin M 0.560; 0.130; 0.500; 0.930; 0.660.
2. cos M 0.300; 0.500; 0.770; 0.912; 0.989.
3. tan M 0.220; 0.100; 0.620; 1.500; 2.00 .

Solve the following right triangles. The notation is as in Fig. 33. The
symbol m is used for mil.

4. ¢ =1800; « = 600m. 9. ¢ = 1550; 8 = 1200m.
6. a = 125; o =740m. 10. ¢ = 300; a = 200.

6. b =250; a=900m. 11. b = 150; ¢ = 175.

7. a = 1200; 8 = 300m. 12. a = 125; b = 150.

8. b =2250; 8 = 250m.

13. From a battery position the inclined range to an airplanc is found
to be 4000 yards and its angle of elevation 540m. How high is the airplane?
What is its horizontal range?

14. If an aiming point is 1500 yards from a gun and an invisible target
is known to be 600 yards to the right of the aiming point as seen from the
gun, what is the angle at the gun between direction of aiming point and
direction of target?

16. In Fig. 55 take OT = 3600 yards, OG = 1600 yards, and angle
TOG = 2000m. Calculate HG, OH, GT, and angle GTO.
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TaBLE B
Mils Degrees Radians Sine Cosine Tangent

0 0° 0o .000 .000 1.000 .000
40 2 15 .039 .039 0.999 .039
80 4 30 .079 .079 . 997 .079
120 6 45 .118 .118 .993 .118
160 9 00 . 157 . 156 . 988 .158
200 11 15 .196 . 195 . 981 .199
240 13 30 .236 .233 .972 .240
280 15 45 .275 .271 . 962 .282
320 18 00 .314 .309 .951 .325
360 20 15 .353 . 346 .938 .369
400 22 30 .393 .383 . 924 .414
440 24 45 .432 .419 .908 .461
480 27 00 .471 .454 .891 .5610
520 29 15 .511 .489 .873 . 560
560 31 30 .550 .523 .853 .613
600 33 45 .589 . 556 .831 .668
640 36 00 .628 .588 .809 727
680 38 15 .668 .619 785 .788
720 40 30 .707 . 649 . 760 .854
760 42 45 746 .679 .734 .924
800 45 00 . 785 707 .707 1.000
840 47 15 .825 . 734 .679 1.082
880 49 30 . 864 .760 .649 1.171
920 51 45 .903 .785 .619 1.267
960 54 00 .942 .809 . 588 1.376
1000 56 15 .982 .831 .556 1.497
1040 58 30 1.021 .853 . 523 1.632
1080 60 45 1.060 .873 . 489 1.786
1120 63 00 1.100 . 891 .454 1.963
1160 65 15 1.139 . 908 .419 2.169
1200 67 30 1.178 .924 .383 2.414
1240 69 45 1.217 .938 . 346 2.711
1280 72 00 1.257 .951 .309 3.078
1320 74 15 1.296 . 962 .271 3.546
1360 76 30 1.335 .972 .233 4.165
1400 78 45 1.374 . 981 .195 5.027
1440 81 00 1.414 . 988 . 156 6.314
1480 83 15 1.453 .993 .18 8.449

1520 85 30 1.492 .997 .078 12.71

1560 87 45 1.532 . 999 .039 25.45

1600 90 00 1.571 1.000 .000
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62. Azimuths. Azimuth difference.

The direction of a line in a horizontal plane may be indicated
by giving the angle which the line makes with a line of known
direction. This angle is called the azimuth of the line.

Let O, G, T denote, respectively, the position of an observer,
a gun, and a target. Let TS, due southward from T, be used
as the reference line for azimuths. The observer at O knows
the lengths and directions (azimuths) of lines OT and OG.
He wishes to obtain the azimuth and length of GT for trans-
mission to the gunner.

N
/H
Fra. 55
Now L STG = £ STO + £ OTG,

or, azimuth of @T = azimuth of OT + azimuth difference OTG.

Calculation of azimuth difference OTQG and range GT.

We assume that OT is large in comparison with OG, so that
A OGT is a long slender triangle. Assume that the length
of OT is less than the length of GT. Draw GH perpendicular
to OT (produced), forming right triangle OGH, in which OG' and
£ GOH are known.

Then HO = OG cos GOH and GH = OG sin GOH.
Range GT = HT approx. = OT + OH = OT + OG cos GOH.

Azimuth diff. OTG (mils) = Cih; — %GTST ﬁ)%g -
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Exercise. Calculate these quantities when azimuth of OT is 30°, OT =
2400 yards, OG = 300 yards, £ TOG = 100°. Repeat the calculations with
the same data except that £ TOG is now 80°. The range correction O
will now be negative.

63. Parallax. Range finder.
If a target, T, (considered as a point) is viewed from two

P

Fi. 56

points P and Q, angle ’TQ is called the parallactic angle at T, or
simply the parallax of T, due to line-segment PQ.

We shall assume that PT = QT, as in IMig. 56, wherc angle m
is the parallax of T duc to line-segment PQ of length 1.

One type of range finder is an instrument which gives the
range to a target by means of the angle subtended at the target
by a tube of known length which forms part of the instrument.
Two images of the target caught at the ends of the tube are
brought to coincide by turning a milled head, the amount of
turning depending on the parallactic angle, which in turn de-
pends on the range.

Exercise 1. 1f | = 4 yards in I'ig. 56, what range should correspond
to each of the following parallaxes:

m = 1mil; 5 mils; 15 mils; 3 mils; 7 mils?
Exercise 2. 1If | = 6 yards what are the parallaxes corresponding to
the following ranges:
r = 1000 yards; 3000 yards; 1500 yards; 1200 yards; 2400 yards?

Parallax as used in Astronomy.

When the direction of the center of the sun, moon, or one of
the nearer planets is observed from the surface of the earth a
correction must be made to obtain the direction as it would be
measured from the center of the carth.. This is due to the fact
that astronomical tables give the position of the bodies of the
solar system treating each body as a point.
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Let O be a position of an observer on the earth’s surface, OIf
a horizontal line, M the center of the moon, angle IOM the
angle of clevation (altitude) of the moon’s center above the
horizon.

Then the difference of direction of M as seen from O and C
is angle OMC, called the parallactic angle or merely the parallax
of the moon at altitude 6. This is angle p in the figure.

When the center of the moon is on the horizon, the parallactic

F16. 56a

angle is OHC. This is called the moon’s horizontal parallaxr and
is represented by the letter .
Take CO = R = 4000 miles and CM = CH = 240,000 miles.
Then
sin m = 7 (radians) approx. = 5134$v = %
That is:
angle = = 4, of a radian

57.3 o
=60 degrees = 0.95

= 34¢° minutes = 57.3".

Exercise 1. The moon’s distance from the earth varies from 221000
miles to 253000 miles. What is the corresponding range of variation of
the moon’s horizontal parallax expressed in minutes?

Exercise 2. For the sun, the distance D is 93,000,000 miles. Show that
the sun’s horizontal parallax is 8.8", if B = 3960 miles.

Hint: Angle 7 in seconds = 206000 g

Exercise 3. Calculate » for Mars, when at the distance D = 50,000,000
miles.
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64. Path of projectile. Parabolic trajectory.

If a projectile leaves a gun at an angle 9 with the horizontal
and with a muzzle velocity v, feet per second (initial velocity or
speed), the horizontal component of v, is vy cos §. This repre-
sents the rate at which the projectile will progress in a horizontal
direction and in ¢ seconds the horizontal displacement of the
projectile will be tvy cos 6 feet. (Air resistance neglected.)

Fra. 57

The initial vertical speed will be v, sin 8 which, if unchecked,
would give the height of the projectile in ¢ seconds as tv, sin 6.
But during ¢ seconds gravity would cause the projectile to fall
gt feet, (9 = 32.2), so the net height is (tvy sin 8 — gt?)
feet. Hence in ¢ seconds the ¢ coordinates 7 of the projectile in
feet will be (air resistance neglected),

xr =1ty cos 0; y =ty xin 0 — gt

Exercise. (a) Take v, = 1200 feet per second, and 6 = 30°. Caleulate
the values of the coordinates x and y for t = 0, 5, 10, 15, 20, 25, 30, 35 sec-
onds. Plot the points (x, y).

(b) The curve so obtained is a parabola. The highest point will be
reached in about 19 seconds. The exact value of the time of arrival at
the highest point, call it T, will be T = vosin 8 + ¢ because the initial
vertical speed v, sin 8 is reduced at the rate of g feet per second. Calculate
T with vo and 6 as in (a).

(¢) Having found T, we can find X and Y, the coordinates of the highest

point of the trajectory: -
X =Tvocos0; Y =Tvosing — 3 ¢gT? = @—2;—6)

Caleulate X and Y. (The answers will be in feet.)

(d) The descending part of the trajectory (parabola) is symmetrical
with the ascending part. Hence

time of flight = 2T = 2v,sin 6 + g;
horizontal range OB = 2X = 2T, cos 6.

Calculate the time of flight and the range.



CHAPTER

V" FUNCTIONS OF

SEVERAL ANGLES

65. Formulas for sin (x + y) and cos (x + y).

Let 2 and y be two angles, each of which we first assume to be
less than 90°. Their sum will then fall in the first or the second
quadrant. The two cases are illustrated in the figures, and the
demonstration which follows applies to either figure.

A
A Q
Q
X X
K P K P
ly
y
1 X
X
0 N Mo X N o mM X
Fic. 58a F1ag. 58b

Construct Z XOP = r and Z POQ = y, the terminal side of
z being taken as the initial side of y.

From @, any point on the terminal side of y, draw perpendicu-
lars NQ and PQ to the sides of angle z, produced if necessary.
Draw MP 1 OX and KP 1 NQ.

Then £ KQP = z, and in either figure,

s1n(x+y)—g—g-%£g—%+gg
MP OP KQ PQ
Hence
(a) sin (x + y) = sin x cos y + cos x sin y.
94
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Also, noting that ON in the sccond figure is a negative segment,
ON OM-NM OM KP
st =0g="0g -~ 0qg " 0q
_OM OP KP PQ
S0P 0Q T PQ 0Q
Hence
(b) cos (x +y) = cos x cos y — sin x sin y.

66. Generalization of formulas (a) and (b).

In the preceding proofs we assumed angles x and y to be acute
angles. Geometric proofs may be made to show that formulas
(a) and (b) hold for any two angles. We shall not do this, but
instead, shall use the method of proof by induction.

We begin by showing that, if formulas (a) and (b) are true
for two angles a and B3, they will remain true when cither angle
is increased (or diminished) by 90°.

First we note two relations obtained by use of Rule (b) of
§21. If 6 is any angle,

(1) sin (8 4+ 90°) = cos 6; (2) cos (0 + 90°) = — sin 6.

Now we assume that the following cquatlom hold for two
angles « and B,

(a") sin (a 4 B) = sin a cos B + cos « sin B;

(b)) cos (a + B) = cos acos B — sin a sin B.

We shall show that these equations remain true when angle
a is increased by 90°.  Accordingly we replace a by o = o +
90°. We obtain

(a") sin (o’ + B) = sin &’ cos B + cos o sin B;

(") cos (o' + B) = cos o’ cos 8 — sin &’ sin B.

We wish to prove that the last two equations are true if the
first two are true. Consider equation (a”).

The left hand side may be written, by equation (1),

sin (@' + B) = sin (a + B+ 90°) = cos (a + B).
The right hand side, by use of (1) and (2), becomes

sin (@ + 90°) cos 8 + cos (a + 90°) sin 8 = cos a cos 8 — sin asin B.
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Substituting these in (a”) we obtain (b’) which was assumed
to be true. Hence (a”) is true.

In the same way we can show that (b"”) is true.

We have now shown that if equations (a’) and (b’) are true
in any given case, they remain true when either angle is increased
by 90°.

But they are true when « = z and 8 = y, x and y being acute
angles; hence they are true when a = z + 90°; if true for «
=z + 90° they are true for x + 2-90°; and so on. Similarly
for angle 8.

In a similar manner it can be shown that (a’) and (') remain
true when either angle is diminished by 90°.

Since any angle can be represented by x + n-90° where z is
an acute angle, we have proved that formulas (a’) and (b’) are
true for all values of « and 8.

Examples.
1. sin 75° = sin (45° 4+ 30°) = sin 45° cos 30° + cos 45° sin 30°
_VEVE, VE1_ Vi3
2 2 2 2 4
2. cos 255° = cos (225°+ 30°) = cos 225° cos 30° — sin 225° sin 30°
V2 V3 _ (_ 1@).1 - Y6+ V2

272 2) 277 4

3. Given sina = 2, cos 8 = %, both angles in the first quadrant.
Calculate sin (« + 8).
Fromsina =% wefind cosa=%;

. V5
from cos 8 =% wefind sing= —3—5-

Substituting these in the formula (a), sin (a+ 8) = sin « cos g+
cos « sin 8, we obtain
32,4 VE_6+4V5
535 3 15

4. Givensin« = %, ain the first quadrant; cos 8 = — 2, gin the third
quadrant; calculate the value of cos (« + 8).

(b) cos (a+ B) = €os « cos B — sin a sin B.

sin (a+ B) =

From the given data we find cos « = g, sin 8= — ‘/TB . Then



GENERALIZATION OF FORMULAS

V5 -
con () = 3~ 2) - (- ) - 28435,

3 5 3 15

6. Show that w = cos 8 — tan a.

€0s « Sin B
cos (a4 p) c€os a cos 8 — sin asin B
Cos a sin g COS « sin B

_COSacos B sin «sing
CoS a SIN B €OS a SIn B8
= cot g — tan a.

. cos (45°+ A) 1—tan A
6. Show that sin (45°+A)  1+tan A
cos (45°4+ A)  cos 45° cos A — sin 45° sin A

sin (45°+ A)  sin 45° cos 4 + cos 45° sin A

ic<)811——1~sinA

_ V2 V2
Tl 1 .
—cosA +—=sin A
7 cos A + 75 sin
_ sin A
_cos A — six}il _ cos A
Tcos A4 sin A sin A
cos A
_1—tan A
71+ tan A

97

Note. Formulas (a/) and (b”) should be learned in verbal form rather

than in terms of any particular letters.

(a") The sine of the sum of two angles equals the sine of the first
angle times the cosine of the second plus the cosine of the first angle

times the sine of the second.
(b") Let the student give the verbal statement.

EXERCISES 30

sin 90° = sin (30° +60°) = 1.

cos 90° = cos (30° + 60°) =0.

sin 105° = sin (45° + 60°) = 1(V2 + VB).
cos 105° = cos (45° + 60°) = (V2 - V6).
sin 165° = sin (30° + 135°) = }(V6 - V2).
cos 165° = cos (30° + 135°) = — (V6 + V2).
sin 285° = sin (60° + 225°) = — (V6 + V2).
cos 285° = cos (60° + 225°) = 1(V6 - V2).

I B B R L
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Prove the identities of Exercises 9-17, using formulas (a) or (b).
9. sin(z + 90°) =cosz. 16. sin (z + 30°) = 3(V3 sin z + cos z).

10. cos (z +90°) = -sinz.

11. sin (z + 180°) = — sin 2.

12. cos (z + 180°) = — cos .

18. sin (z + 270°) = — cos z.

14. cos (z + 270°) = sin z. 18. sin2r =2sinzcosz [2r ==z +2z].

19. Ifsin a = $ and sin 8 = %, e and g in quadrant 1, ealeulate sin (a + B)
and cos (a + B).

20. If sina = 4, « in quadrant 11, cos 8 = %, 8 in quadrant 1V, calculate
sin (a + B) and cos (a + B).

67. Formulas for sin (@ — B) and cos (@ — B).
Replacing 8 by — 8 in (a) and (b), we have the two equations

1
16. sin (z + 45°) = — (sinz + cos x).
( ) 75 ( )

i

1
17. cos (z + 45°) = —— (cos x — sin ).
v2

sin (@ — B) = sin @ cos ( — B) + cos a sin (— B);

cos (@ — B) = cos acos (— B) — sin a sin (— B).
But cos (= B) = cos B and sin (- B) = — sin 8.
Therefore the two preceding equations become

(©) sin (« — B) = sin a cos B — €oS « sin B;
(d) cos (a — B) = cos a cos B + sin « sin B.

There are really two steps involved here:

1) in (a) and (b) replace 8 by — 6 and reduce as above;

2) then replace the letter 8 by the letter 8, to conform to the
letters used in (a) and (b).

Equations (a), (b), (c), (d) are usually called the addition and
subtraction formulas of trigonometry. All the other working
formulas are deduced from them.

Examples.
1. cos 75° = cos (135° — 60°) = cos 135° cos 60° + sin 135° sin 60°
V21 V2 _\/_Z_’) _ V6 — \/§_

=2 et =1
2. Givensina = £, cos 8 = — %; calculate all the values of cos (a — B).
Angle « may lie in quadrant I or II; cos « = + 4. Angle g8 may lie
) V5
in quadrant I or III; sin g8 = + -;
- : o 4 2\ 3 5
co8 (a — B) = coS « oS B+ sin a sin B = + 5<_ §> + 3<i T)
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The + signs may be paired in 4 ways, giving 4 answers. Choosing both
upper signs gives one answer:

4 2\, 3(, V5)_ -8+3V5
ove-n= -l ) -2

The student should write out the other three answers.

EXERCISES 31

By use of the equations in Exercises 1-3 calculate the sine and cosine
of the angle on the left.

1. 90° =135° — 45°. 2. 15° = 60° - 45°. 3. 105° = 135° - 30°.

Prove the identities of Iixercises 4-9 by use of (¢) or (d).

4. sin (90° - «) = cos a. 7. cos (180° — &) = — cos a.
6. cos (90° - «) = sin a. 8. sin (270° — ) = — cos a.
6. sin (180° - «) = sin a. 9. cos (270° - a) = — sin a.

10. Given sina = ;% and cos 8= %, @ and g in quadrant I, caleulate
sin (a — B) and cos («a — B).
11. Givensina = 12 and cos 8 = §, « in quadrant IT and 8 in quadrant
1V, calculate sin (« — 8) and cos (a — ).
. . sina — oS « Cos v + &in o
12. Prove: sin (a — 45°) = —————; cos (a — 45°) = - .
(a ~ 45°) T eos ) =

68. Formulas for tan (a + ) and cot (@ * B).
Dividing (a) by (b), member by member, we have
sin (a+ 8) sin a cos B+ cos a sin B

tan (a + ) = cos (a + B) cos a cos B — sin a sin B
sina cos B cos a sin B
_cos acos B COS a COS B.
B sin @ sin 8
p - hra smp
cos o cos B
Hence
tan o + tan B
(&) tan (a + 6) = 1 - fan « tan B
Similarly,
@) cot (a + B) _cotacotB 1

cot a + cot ﬁ
Also, from (e) and (f), by changing the sign of 8,

tan o — tan
® tan (@~ ) = 1 e s tan
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col x cot B + 1.
cot 3 — cot a

(h) cot (o — ) =

Example.
With the data of Example 3, §66, calculate tan (a« — 8). First cal-

VE
culate tan « = , tan g = ~§—5 . Then

V5
2 6—4Vv5

V5 NG
1+(§)<75) 8+ 3V5

EXERCISES 32

Calculate the tangent and cotangent of the first angle in each of the
equations below.

o

tan (a — B) =

1. 15° = 60° - 45°. 4. 165° = 135° + 30°.
2. 105° = 60° + 45°. 6. 135° = 180° - 45°.
3. 105° = 135° — 30°. 6. 225° = 180° + 45°.

69. Formulas, Group B.

For convenience we collect formulas (a), (b) . . ., (h) and form
Group B, numbering them consecutively with the formulas of
Group A. The formulas for cot (a + 8) may be omitted; in
place of them use the formulas for tan (« + 8) with the fractions
inverted.

Formulas, Group B

“(9) sin (a + B) = sin a cos B + cos « sin B.
(10) cos (o + B) = cos « cos B — sin « sin B.
(11) sin (¢ — B) = sin a cos B — cos a sin f.
(12) cos (a — B) = cos a cos B + sin « sin B.
_ tana +tanp .
(13) tan (o + 6) = 1 - tan o tan B
_ cot a cot 6__—__1
(14) cot (a+8) = = or o col B
_ tan oo — tan B .
(15) tan (o = B) = T tan o tan B
(16) cot (o — B) = cot a cot B + 1.

cot B — cot x
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70. EXERCISES 33
In Exercises 1-8 calculate sin 6, cos 6, tan 6.
1. = 75°= 45°+30° 6. 0 =15° =45°~30°
2. 6 =105° = 150° — 45°. 6. 0 =15° =150° - 135°.
3. 6 =180° = 150° + 30°. 7. 6 = 105° = 240° - 135°
4. 0 = 285° = 240° + 45°. 8. 0 =195° = 240° - 45°.

9. If cos @ = £, cos B = 7'}, @ and 8 in quadrant I, calculate cos (a + B).
10. If sino=1%, sing=1%, a and B in quadrant II, calculate
cos (a — B).
11. If sinz =, sin y= %, caleulate sin (z + y) and tan (z + y):
(a) when z is in quadrant [ and y in quadrant I;
(b) when z is in quadrant I and y in quadrant II;
(e) when z is in quadrant IT and y in quadrant I;
(d) when z is in quadrant II and y in quadrant II.

Show that xercises 12-21 are identities.
12. sin (60° + @) = sin (60° — &) = sina.
18. cos (45° +2) — cos (43° — 2) = — V2 sin z.
14. cos (A —45°) —sin (A +45°) =0
16. sin 5z cos x + cos S5z sin xr = sin 6z.
16. cos 3z cos 2x + sin 3r sin 2x = cos z.

17. tan (0+4) t'mo+1.

1 —-tané
1-tan@
18. tan (Z - 0) “Trtand
19. :;:E:’_.___S:mi; =cot B8 — cot a.
20. c_““’_('___‘_”) = cot u +tanw.
Smu Cos v

tan (45° + o) (1 +tana)?

21 tan (45° —a) (1 — tan a)?

71. Functions of 2c.
Putting 8 = « in (9), (10) and (13) of Group B, we have

17) sin 2a = 2 sin a cos a,
(18) cos 2a = cos® o — sin® a,
=1 - 2sin? o,
= 2 cos’ a —1.
2 tan o
(19) tan 2« 1—‘_—‘17{"'2—'

For cot 2« use 1 Similarly for csc 2« and sec 2a.
tan 2a
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Note. Formula (17) in verbal form is: —
The sine of twice an angle equals twice the sine of the angle
times the cosine of the angle.

However, we might put 2a = 8, a = gand obtain
, ; BB
a7 sin B = 2 sin 5 cos 5

In verbal form, this would be:

The sine of an angle equals twice the sine of half the angle times
the cosine of half the angle.

The essential thing to notice in formulas (17), (18), (19) is
that the angle on the left is twice the angle on the right, or,
what amounts to the same thing, that the angle on the right is
half the angle on the left.

Examples.
1. From (17) or (17’), sin 60° = 2 sin 30° cos 30°. Check this.
2. From (18), cos 180° = cos? 90° — sin? 90°
= 1— 2sin? 90°
= 2 cos? 90° — 1. Check these.
o_ _2tan 60° .
3. From (19) tan 120° = Tt 60° Check this.
4. sin 3z = 2sin 3—; cos 3. ' an
2
5. cos 62 = 1 — 2 sin? 3r. (18)
6. Show that M = cot a.
sin 2«
1+ cos2x 14 (2c08®a—1)
sin2«  2sin e cos a (18), (17)
2cos’a _cosa

= : == = cot a.
2sinecosa Sin a

7. Calculate the functions of 2z when cosz = §.
We first find sinz = + $ and tanz = + 4.
Then sin 2z =2sinzcosz =2(x (@) = + 24,
cos 2r=2cos’r—1=2(3—-1= {3} - 3¢ = — +%.
2(+ %) +3 _ 2

tan2:c=1_(i%)2=1_19(1= 7

+
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We might also get tan 2z from sin 2x + cos 2z. The other three
functions can be obtained by inverting the values just calculated.

Observe that cos z = $ means that £ may lic in quadrant I or IV,
Then 2z will lie in quadrant 1I or I1I. The upper signs in the answers
correspond to 2z in quadrant II, the lower signs to 2z in quadrant I11.
Check this by looking up in the table the two basic angles (§34) and
doubling each of them.

EXERCISES 34

1. Obtain the functions of 60° by putting « = 30° in these formulas.
Check the results.
Check the formulas with « = 150°,
Check the formulas with « = - 60°,
Check (17) and (18) with o = 45°.
Prove: 2 sin 20° cos 20° = sin 40°.
Prove: 1 + cos 80° = 2 cos® 40°.
Prove: sin? 50° + cos 100° = cos? 50°.
2 tan 40°
Ttan 80°
Caleulate the value of tan 2z when tanz = 4.

10. Caleulate the functions of 2« when sin a = -%.

Prove: 1 — tan?40° =

© o Jo oW

Answers: sin2a =z 13; cos2a =113; tan 2« =+ 120,
Prove the following identities.
11. sin 4a = 2 sin 2a cos 2a.
12. cosdr =1 -25sin?2r = 1 — 8 sin’ z cos? .
1 - cos 2r . N o
B —g -tz 14. (sin B +cos B)* = 1 +sin 23.

72. Functions of }a.
The second and third values of cos 2« in (18) are
cos 2a =1 - 2¢sin*q, cos2a =2 cos’a — 1.

Solving these for sin « and cos «a respectively, we have

. 1 — cos 2a 1 + cos 2a
sin ¢ = + ‘/_—0“—’ coS a = + —i?——

Replacing a by 1a, these become

(20) sin jo = + g —C05

I
H
|
|

(1) cos 1 1+cosa
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In formula (20) the sign before the radical must be taken +
when angle 3« lies in quadrant I or II because the sine function
is positive in those quadrants; the sign must be taken — when
angle 3« lies in quadrant III or IV.

In formula (21) the sign before the radical must be taken +
when 1a lies in quadrant I or IV, and — when 1« lies in quadrant
II or III.

Dividing (20) by (21), member by member,
1-cosa 1-—cosa sina
1+cosa  sina 1+tcosa

The second of these forms is obtained by multiplying both
sides of the fraction under the radical sign by 1 — cos a. This
gives

1 — cos a)? l—-cosa)? 1-—-cosa
tan 3o = + (—0—)—=i ( — ) = -
1 - cos® sin® « sin o

This fraction always has the same sign as tan }a, so the sign
+ has been dropped. The third form for tan ia comes from
using the multiplier 1 + cos a instead of 1 — cos «.

The student should state formulas (20), (21), (22) in verbal
form. Note that the angle on the right is twice the angle on
the left.

Examples.
1. In formula (20) put « = 30°. Then

—— V3 ‘
sin15°=+‘/£_°;i?£= 1——=‘/2—4\/§=\/2;*/3.

(22) tania = +

2

2. Prove thatl——ﬂf = — 2sin? 2.

sec a 2
1——&!=—1——1=cos(x—1=(1--2sin7’g)—1=—2sin25-
sec a sec a 2 2

3. Prove that sin o tan 2 = 2 sin? 2-

2 2 @

sin -

. o . o a o . o 2
smatan5—25m§cos§tan—é—2sm§cos§ -
COS—Q

. a
= 2sin? -
2
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73. Formulas, Group C.

amn sin 2o = 2 sin a €os a.
(18) cos 2a = cos? o — sin’
=1-2sin’ a
=2cos’a ~ 1.
2tan o
(19) tan 2« = 1_—“"{2';'

Il

(20) sin o = + 1-cosa

~ 2
(21) cos %a = ‘ }igos_a.
(22) tania = + _1___.‘5_0_53
Vl + cos a

1-cosa
sina
__sina

14 cosa

74. EXERCISES 35

Calculate the values of cos 15° and of tan 15°.
Calculate the functions of 22}° from those of 45°.

2

1.

2.

3. Calculate tan 2 when cos a = 2, ain quadrant I.
4. Calculate the values of tan 2« when cos a = .

Prove the following identities.

. . 2
6. sin 6a = 2 sin 3« cos 3a. 12. (sin B _ cos _@) -1 sing.
6. cos20 = 2_:&(:2_0‘ 2 2
: sec? 0 18. sinz cot < = 2 cos? .
o 2 2
T. tang = csca — cot a. 14. cos z(1 + sec z) = 2 cos® ?2—
8. cot « — tana = 2 cot 2a. 16. 2 tan @ cot 2a = 1 — tan® e.
2 sin 0 cos 0 ! @ s a
9. tan20 = o0 —sin?o 16. 2 cot§ cot a = cot 5~ 1.
1 17. cos 2z = sin’z (cot*z - 1).
10. sec 26 - 2cos?0 — 1 csctx

18. sec 2z =

11. cos*B —sin‘ B = cos 28. cot’z — 1
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75. Formulas for sin u + sin v and for cos u + cos v.
Formulas (9) to (12) of Group B are
sin (a + B) = sin «a cos 8 + cos a sin 3,
sin (e — B) = sin a cos B — cos « sin S,
cos (a + B) = cos a cos B — sin a sin B,
cos (@ — ) = cos a cos B + sin a sin G.
Forming the sum and difference, respectivcly, of the first two
equations, we have
(p) sin (a + B) + sin (¢ — B) = 2 sin a cos B;
(a) sin (e + B8) — sin (@ — B) = 2 cos « sin B.
Forming the sum and difference, respectively, of the other
two equations, we have
(r) cos (a4 B) + cos (@ — B) = 2 cos a cos B;
(s) cos (e + B) — cos (@ — B) = — 2 sin « sin B.
Now in the last four equations let

a+B=u and a—-8 =0

u+v u—-v
Then a=— and B8 = 5

Substituting in equations (p), (q), (r), (s), we have four for-
mulas, called the addition theorems of trigonometry, namely

Formulas, Group D

(23) sinu + sin v = 2sin 25Y cos LY

g €S —5—
(24) sinu—sinv=2cosu;vsinu;v.
(25) CoOSU + Cos U = Zcosu;—vcos u_;_v
(26) cosu—cosv=—23inu;vsin'f%i’.

The four equations (p), (q), (r), (s) are themselves often con-
sidered as a group of formulas, and are repeated below, with
right and left members interchanged.
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Note. When u is less than v, the angle in the second factor on the right
is negative. Change to the positive angle by use of §23.

Formulas, Group D’
(23') 2 sin a cos B = sin (a + B) + sin (a - B).
(24" 2 cos a sin B = sin (@ + ) — sin (a — B).
(25") 2 cos a cos 3 = cos (a + B) + cos (a — B).
(26") — 2sin a sin 8 = cos (a + B) — cos (a — ).

[}

1

Example 1.

sin 60° 4 sin 40° = 2 sin

I

60° + 40° 60° — 40°
) cos 3
= 2 sin 50° cos 10°.

Example 2.
sin 60° — sin 40° = 2 cos 60 —;40 sin 60 ; 10

2 cos 50° sin 10°.

Example 3.
40° + 60° . 40° — 60°

2 cos 5 sin 5

2 cos 50° sin (— 10°)
— 2 cos 50° sin 10°.

sin 40° — sin 60°

I

We might also write sin 40° — sin 60° = — (sin 60° — sin 40°),
and proceed as in Example 2.

Example 4.

2 cos 80° cos 50°

cos (80°+ 50°) 4 cos (80° — 50°)
cos 130° 4+ cos 30°.

1

Example 5.
— 2 sin 80° sin 50° = cos 130° — cos 30°.

Example 6.

oS 75° 4 cos 15° -3

cos 75° — cos 15° :

cos 75° 4 cos 15° 2 cos 45° cos 30°
cos 75° — cos 15°  — 2 sin 45° sin 30°

= — cot 45° cot 30° = — V3,

Show that
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Example 7.

sin a 4 sin 8 tan “3’5
Show that ——+—"—F = .
sin a — sIn B a—f
tan ——
2
. . 2 sin at b cos 2= g
sin a + sin B _ 2 2
(23), (24)
sine—sing a+p . a—8
2 cos sin
2 2
+ 8
tan Z
=tanaj*_6cota‘_ﬁ= 2
Z 2 tan ﬁ.:_‘..j
2
76. EXERCISES 36
Express the sums or differences as products:
1. sin 70° +sin 50° = ? b. cos 80° — cos 50° = ?
2. cos 70° 4 cos 50° = ? 6. cos 50° + cos 80° = ?
3. sin 70° —sin 50° = ? 7. sin 140° + sin 160° = ?
4. sin 50° —sin 70° = ? 8. cos 140° — cos 160° = ?
9. sin 140° 4 cos 160° = ? (NoTE. cos 160° = — sin 70°.)
10. sin 40° 4 cos 70° = ? 11, cos 280° + sin 140° = ?
Express the products as sums or differcnces:
12. 2 sin 60° cos 20° = ? 16. 2 sin 60° sin 20° =
13. 2 cos 60° sin 20° = ? 16. 2 cos 130° sin 50° =
14. 2 cos 60° cos 20° = ? 17. 2 cos 40° cos 140° = ?

Prove the identities:

18. sin 3z + sin 5z = 2 sin 4z cos z.

19. sin 10« + sin 6a = 2 sin 8« cos 2a.

20. cos 2r + cos 4z = 2 cos 3z cos z.

21. sin 78 — 8in 58 = 2 cos 64 sin 8.

22. cos 46 — cos 60 = 2 sin 56 sin 6.

28. cos y + cos 2y = 2 cos 37 cos 12/

24. cos (a + 45°) + cos (a — 45°) = V2 cos a.

26. sin (5 -x) ~ sin (5 + :c) = —sin 2.

26. 2 sin 5« cos 3a = sin 8a + sin 2a.
27. 2sin 40 sin 6 = cos 36 — cos 56.
28. 2 cos a cos B = cos (a — B8) + cos (a + B).

29. 2cos(a+7-6r>cos(a—1—6r)scos2a+§.
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71. EXERCISES 37

These exercises are placed here to afford further drill in the use of the
basic formulas of Trigonometry. Many are quite simple; others will test
the ingenuity of the best students.

1. If sina = ¢ and sin 8 = 2, find the value of sin(a + 8) and cos
(a 4+ B) when « and B are both in the first quadrant.

2. As in excrcise 1, when « and g arc both in the second quadrant.

3. If cosz =% and cosy =47, caleulate sin (z +y) and cos (z + y)

when z and y are both in the first quadrant. Calculate sin 2(z + y) and
cos 2(z + y).
4. As in exercise 3, when z and y are both in the fourth quadrant.
6. If sinz = § and sin y = %, calculate all values of sin (z + y) and of
sin (z - ¥).
6. If sina = § and sing = %, calculate all values of cos (a + B) and
of cos (a — B).
7. If cosa =% and cos B = 2, calculate all values of tan (a + 8) and
of tan (a - B).
8. Calculate tan (z +y) when tanz = V3 and cot y = V3.
9. Calculate the value of tan (2z — y) when tanz = 4 and tan y = 42,
10. Calculate cot (¢ — 8) when tana =k +1 and tang =k - 1.
11, If tana = % and tan 8 = -3, calculate tan (2« + B).
19. sin (a + B)
COs o COS 3
13 sin (a + B)

. S = tan 1.
Sin a cos 3 cot o b+

= tan a + tan g.

. 2D otacotp i L.
sin a sin 3
16. 0@ =B _pon iy tang.

COS a COS 3
sin (r+y) tanz +tany
16. — = .
sin(r -y) tanz —tany
17. (z +y) _coty—tanz
‘cos(x-y) coty+tanz
18. 5in 3z = 3 sinz - 4 sindz.
19. cos 3z =4 cos®z — 3 cos z.
dtanz —tan®z

20. tan 3z = 1 -3 tan’z
cotdz — 3 cot z
21. cot 3z = m'

4 tan §(1 — tan’6)

1 -6 tan?0 + tan‘ @

28. V2 sin (A + 45°) =sin A + cos A.

24, V2 sin (6 — 45°) = 8in 6 — cos 0.

26. sin (0 + ¢) sin (0 — ¢) = cos? ¢ — cos? 4.

22. tan40 =
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26.
27.

28.

29,
30.
31.

82.

33.

34.

36.

36.

317.

38.
39.
40.

41.
66.
66.

67.

68. -

69.

60.
61.

62.

FUNCTIONS OF SEVERAL ANGLES

cos (u + v) cos (u — v) = cos? u — sin? .
T cot A +1
cot (A ~71) T1-cotd

_ 8cote .
" cot?a -3

tan (a +g) + tan (a - 7—:;)

sinz sin(y —z) +siny sin(z —z) +sinzsin(z - y) =0
cosz sin(y —2) +cos y sin(z —x) +coszsin(x —y) =

cos (T + Y +2) = cos T Cos y cos 2 — cos T sin y sin 2z

—sinz cos y sin z — sin z sin ¥ cos 2.

L 5r 42. sec’6cos20 =1 — tan? 6.
sm — COS —=
12 R 12 _4 43. 1 + tan @ tan 20 = sec 26.
sm oS ;"_2 44, 1 —cos2x = tanzx sin 2.
86. sco20 = 100
tan ( + 0) tan{ - -0 . - tan
4 sin 26
46, ———— =tané.
. 1+ cos 20
cos (0 +% + sin §-2) =0. .
4 4 sin 26
47. ————— = cot 6.
cot (0 + I) + tan (0 —) 0. 1-cos 20
4 48. cot?9 — 1 = 2 cot 6 cot 26.
cot (0 - —) + tan (0 += ) 0. 49. 2 — sec? g = sec® 0 cos 26.
50 cos2§ 1+tand
cot T 4+ tan = = 2V3. 1-sin20 1-tand
8 8 51 cos 3z 2 cox 2 1
— . = 0Os 2r — 1.
2cosz = V2+ V2 cos z
8 62. tan? 1 - cos 2z
cot 8 — cot 20 = csc 29. s = e o
. _ 2tanx cos 30 sin 36
sin 2z = 1+ tan’z 53. :;W Py =2 cot 29.
esc?x tan 6 + cot 0
% = — L | L AT TG e
SCCLT = stz -2 b4 cot 6 —tan @ see 20,
tan (45° + ¢) — tan (45° — ¢) = 2 tan 2.

cosd ¢ —sind ¢ 2 4 sin 2¢

cos ¢ —Sing 2
cos® ¢ — sin® ¢
cos ¢ — Sin ¢

sin z + cos z

= tan 2z + sec 2z.
COS x — sin x
. 4 tan?x
sin 2r tan 2 = —————.
1 —tantz

=1 + } sin 2¢ — 1 sin? 2.

cos? 6 + sin? 0 cos 2¢ = cos? ¢ + sin? ¢ cos 26.
1 4+ 08 2(6 — ¢) cos 2¢ = cos? 6 + cos? (0 — 2¢p).

2 Ty _
tan (0+4) 1

2 T
tan' (0+4)+1

= sin 26.



63.

64.

66.

66.

67.

68.

69.

70.

71.

72.
73.

4.

76.

76.

7.

78.

79.

81.

82.
83.

EXERCISES

o (43)
o (-7

sin z + sin 2z
1 + cos z + cos 2z
sin 2z — sin z
1 —cosz + cos 2z
cot’ 9 + tan? @
cot? 6 — tan? 6

sinf —cos@ F-:m 20

sind +cos@ V1 +sin26

(sin 9 + cos 9)2 =1 +siné.
2 2

2
(sin ,_26 — Co8 g) =1 —siné.

‘)
cns 0 1 - tan 5

1+sing

= sec 2z — tan 2z.

tanzx =

tan x

sec 20 — } tan 26 sin 20 =

1 + tan g

1 +tnnf

= secr + tan x.

Hlv

1 — tan :

ol

I
tanzr - tan s = tan sec x.
2 2

1+ sec
LR NS B4
sec ¢ 2

xI
see? T =2 tan  esc z.

5 2

1 4 cos 3¢ 3¢
sns, "oty

1 + sin 45° 1o
cos 45° tan 675"

____}_.___ = cot (I +g).
sccO+tang O \172
1 +sinz +cosz T
————— =cot 5
1-+sinz - cosz 2

[2 sin z — sin 2z
V2 sinz + sin 2z
\/3 sin 75° — cos 75° = V2.

tan

Sinis_g 9_ i S_)_o §0,
D) c082—81n2c082

sin 4z + sin 2z = 2 sin 3z Cos z.

sin 3z + sin 5z = 8 sin z cos? z cos 2z.
cot 15° — tan 15° l\/—

cot 15° + tan 15° 2 3.

+ cos 40 sin 26 = 0.

111



112 FUNCTIONS OF SEVERAL ANGLES

1 - V2 sin 75°
86. —————— = — cot 60°.
1 - V2 cos 75°

86. cos 100° — cos 40° = — cos 20°.

87. sin (g + a) — sin (% - oz) = sin a.

88. cos (£+a) — cos (E—a = -V2sina.

89. cos (8 + ¢) +sin (0 — ¢) = 2 cos (g—o) cos (§+ ¢).

90. 2 sin (a +I) sin (a - 77;) = sin? a — cos? a.

4

91, sin (:—; + a) — sin (:—; - a) = V2sin a.
92. cos3r —cosx = — 4 sin?z cos z.

sin 75° + sin 15° V3
9. sin 75° — sin 15° 3.
9 cosztecosy o rTHY T-Y

* cosx —Ccosy 2 2

(sin o 4 sin B)(cos o 4 cos B) _ s —f
9. (sin & — sin B)(cos & — cos B) cot 2

(sin @ + sin B)(cos @ — cos B) ,a+f
9. (sin & — sin B)(cos « + cos B) tan 2
o7 (sin 75° + sin 15°)(cos 75° + cos 15°) _3

(sin 75° — sin 15°)(cos 75° — cos 15°)
98 cos 2z + cos 122z cos Tz — cos 3z 2 sin 4z _
* cosbz +cos8 ' coszx — cos 3z sin 2z
99. sinz 4 sin 2z + sin 3z = 4 cos 3z cos z sin 3z.

(Hint. Replace sin z +sin 3z by 2 sin 2z cos z and sin 2z by 2sinz
cos z; from these results factor out 2 cos z and combine the remainders
by the formula for sinu + sinv.)

100. sin z — sin 2z + sin 3z = 4 sin }z cos = cos 3z.
101. cos z — cos 2z + cos 3z = 1 — 4 sin 3z cos z sin 3z.
sin @ + sin 26 4 sin 39
102. oS 8 + cos 20 + cos 30 tan 26,
108. cos 20° + cos 100° — cos 140° = 0.
104. cos 6 + cos 36 + cos 58 + cos 70 = 4 cos 6 cos 260 cos 46.
106. sin 6 + sin 39 4+ 8in 50 + sin 76 = 16 sin 8 cos? @ cos? 26.
106. 4 sin? ¢ cos? ¢ + (cos? ¢ — sin? )2 = 1.
107. (cos z cos y +sinz sin y)? + (sinz cos y — cos z sin y)* = 1.
tan 3z - tanx
108. 1 +tan 3z tanz
tan (n + 1)8 — tan no
1 + tan (n + 1)6 tan né
tan (6 + ¢) — tan ¢
1+ tan (0 + ¢) tan ¢

= tan 2z.

= tan 0.

109.

110, = tan 0.



111.

112.
113.

114,

116.
116.
117,
118.

119.
120.

side.)

121,
122.
123.

124.

126.

126.

127.

128.

129.

130.
131.

EXERCISES 113

tan (6 — ¢) + tan ¢
1 -tan (0 — ¢) tan ¢
sin nd cos 8 + cos nd sin § = sin (n + 1)6.
2 csc 4x + 2 cot 4z = cot £ — tan z.
If tanz = :—:, show that JZ f z + V’Z ;Z = \2/5;_?%:
4 cos® z sin 3z + 4 sin® z cos 3r = 3 sin 4z. (See Ex’s 18, 19.)
sin® z + sin® (120° + z) + sin® (240° + z) = — { sin 3z.
cos 6z = 16(cos® z — sin® z) — 15 cos 2z.
1 + tan® x = sect z(sec? z — 3 sin® ).
3 sin z — sin 3z
3 cos x + cos 3z
sin 2z sin 2y = sin? (z 4+ y) —sin?*(z — y). (Factor the right-hand

= tan 6.

=tan’z. (See Ex’s 18, 19.)

sin da sin a = sin? 3a — sin® 2a.
8 cos’a -1 + cos 4a = 8 cos* a.
cos 2r + cos 2y + cos 2z + cos 2(x + y + 2)
=4 cos(z +y)cos (y +2) cos (z + ).
sin? x +sin? y +8in? z + sin® (z + y + 2)
=2 —-2cos(z +y)cos (y+2)cos(z+z).
cos?x + cos?y 4+ cos?z +cos?(z +y — 2)
=2+2cos(x +y)cos(x - 2z)cos (y — 2).
-y .-z . y+z
5 sil—5—sin
sin 2« + sin 28 + sin 2y = sin 2(a 4+ 8 +7) + 4 sin (a + B) sin (8 +7v)
sin (a +7)-
sin(a+B-v)+sin(a - +v)+sin(B+y —a) —sin(a+8+7)
= 4 sin « sin B8 siny.
cos(a+B8-v)+cos (B+vy-a)+cos(a+y—B)+cos(a+B8+7)
=4 cos a cos 3 cosy.

. . . . .z
sin (r —y —2)—sinz —siny ~ sinz = 4 sin

Show that the equation sin z = a + (]—1 is impossible.

For what values of a will the equation 2 cosz =a +$ give possi-

ble values for z? Ans. a=+1.



CHAPTER

Vil

PLANE TRIANGLES

78. The law of sines.

Between the six parts of a plane triangle there exist, aside
from the angle-sum equal to 180°, two other fundamental rcla-
tions which we proceed to obtain. Additional relations will
then be derived from these.

In any plane triangle, the sides are proportional to the sines of
the opposite angles.

Let ABC be the triangle, CD one of its altitudes. Two cases
arise, according as D falls within or without the base (figures).

!
|
|
|
:
hi
|
I}
|

F1a. 59a

First figure Second figure.
From A ACD, h=bsina; h=>bsin(r—a) =bsin a.
From A BCD, h=asinf3; h =asinpB.
Equating the values of h, we have in either case
a b

sin@ sin B

bsina=asingB, or

114



THE LAWS OF SINES AND COSINES 115

By drawing perpendiculars from the other vertices and com-
bining results we have the law of sines,

a b c
@ sina sin 3 - siny'

79. The law of cosines.

In any planc triangle, the square of any side equals the sum of
the squares of the other two sides, minus twice their product by the
cosine of their included angle.

In the above figures let AD = m.

First figure Second figure.
In A ACD, m = b cos a; m =bcos (r —a) = - bcos a.
In A BCD, a* = h? + (¢ — m)? a® = h* + (¢ + m)?
= h*+ ¢* — 2cm + m. = h®+ c* + 2cm 4 m*.

But, in cither figure, h® + m? = b2
Hence a® = b*+ ¢ - 2cm. a® = b* 4+ ¢t + 2em.

Replacing m by its value above, we have in either case,

2) a = b + ¢t - 2bc cos a.
(2’) Similarly, b = a4+ ¢ - 2ac cos B,
(2") and, 2 =a?+ b — 2ab cos v.

The verbal statement of the law of cosines covers all three of
these equations.

80. Applications of the law of sines and the law of cosines.

Example 1.

In A ABC, given a = 40, b = 35, « = 50°; to determine angle 8 to
the nearest minute.
a_sin
b sing

. b
Law of sines: -

or sin 8= - sin a.

Substitute the given values:
sin g = §§ sin 50° = X 0.7660 = 0.6702.  (Table III)
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The basic angles (§34) are: g = 42°5'; g’ = 137° 55'. We have two
possible values for angle 8, but the second value must be discarded as
impossible because the sum « + 8’ = 50° + 137° 55’ exceeds 180°.

Fig. 60 shows the triangle drawn to scale, one marked segment
representing 5 units of length. First construct an angle of 50° = «;
on one of the sides of « lay off b = 35 = AC. With C as center and
radius a = 40 strike an arc to cut the second side of angle a.

C C
35 40 35
o8 28
50° 50°
A B A B’ B
| — PR US D WY S SR | | T NS W N N N RS |
0 25 50 (0] 25 50
Fia. 60 Fia. 61
Example 2.

In A ABC, given a = 28, b = 35, « = 50°; to determine angle 8
to the nearest minute.
Asin Example 1:  sin 8 = §3 sin 50° = 0.9575.
Basic angles: B =173°14’; g’ = 106° 46’.

Fig. 61 shows the construction and indicates two possible triangles:

A ABC with basic angle 8 = £ ABC and A AB’C with basic angle
8 = £ AB'C.

Example 3.

Two sides of a parallelogram are 40 ft. and 50 ft. long, respectively,
and their included angle is 50°. Determine the length of the shorter
diagonal. (Figure 62.)

50° \
59

Fic. 62

By the law of cosines:
d? = 40* + 502 — 2-40-50 cos 50°
= 1600 4 2500 — 4000 x 0.6428 = 1529.
d = 39.14 feet.
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EXERCISES 38

In A ABC calculate the required element. Draw figures to scale.
1. a=30, b=25 o=40% =1

2. a =20, b=25 o-=40% B=2
3. b=100,c =75, B =45% =7
4. b =75 c =100, 8 = 45° vy =1
6. a =75 c =90, v =55% a=1?
6. a=90, ¢ =75 v =55% a="1
:l.a=5, b=6, v =70% c=1
8. a=10, b=15 v =45% c =1
9. a =25 ¢ =40, B =60°% b=1"
10. a =30, ¢ =100, 8 = 30°%; b=2?
1. a=4, b=5 ¢=7 oBv="?

12. a =10, b=15 ¢ =20; o, B,y ="
18. a =30, b=25 ¢ =20; a,B,v="1
14. In Example 3 calculate the long diagonal.

16. An airplane travels E 40° N a distance of 150 miles, then I 70° N
a distance of 200 miles. How far is it now from the starting point? Solve
by the law of cosines.

81. The law of tangents.

In any plane triangle, the difference of two sides is to their sum
as the tangent of half the difference of the opposite angles is to the
tangent of half their sum.

From the law of sines: & = S+ 2.
b sinpg
a sin a a sin @
Therefore: b +1= S B +1 and 5 1= g 1.
Therefore: & +b _sin a + sin B and = b _sin a.'-— sin B3
b sin 8 b sin 8

Dividing the last equation by the preceding equation gives
a—-b sina-sinf
a+b sina+sinp
_2cos 3(a+ B) sin 3(a = B)
~ 2sin (e + B) cos (a — B)
= cot 3(a + B) tan 3(a — B).

That is,

®) a—b_tan%(a—ﬁ)

a+b tani(a+B)
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Similarly,

3 a—-c tani(a —'y)
atc tanila+y)

(31/) and b-c _ tan %(6 -v)

b+c tani(B+7v)

The symmetry of these formulas makes them easy to remem-
ber. In actual practice, they are used in slightly modified form.
Thus the first of them is written,

tan 3(a — B) = —‘_i_”z tan 3(a + B).
Example.
In A ABC, a =15, b =10, v = 50°. Determine the angles «, 8 to
the nearest minute.
Substitute in (3):
a—b=>5a+b=25}(a+ p) = $(180° — 50°) = 65°.

Then: . - tanila—8),

tan 1(a — B) = ! tan 65° = (0.4289.

25  tan65° °
Ha—B) =23°13; sum = o« = 88° 13/,
$a+ B) = 65°% difference = g = 41° 47",
EXERCISES
In A ABC determine the two angles not given.
1. a=25b=151v =60° 3. a=>50,c =253 =42°
2. b =16, ¢ =12, a = 40°. 4 a=24,b =36~ =70

82. Functions of the half-angles.

When the three sides of a triangle are known, its angles are
best calculated by the formulas now to be derived.

From the law of cosines we have,
b2 + CZ — a2.

CoS a = Sbe

In practice this formula is not convenient unless a, b, and ¢
happen to be simple numbers. Now

sin ja = ‘/—-——1 E ;OS . (Why not + 1-coso —'SOS a?)
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_b2+cz—a2 2 -V -+ a

But1 —cosa=1

2bc 2bc
@- G- [atb-0la-(b-0]
2bc 2bc
1-cosa (a+d —c)(a—b-i—c).
2 4bc

Tet 2s=a+b+¢c or s=3(a+b+c).
Then 2(s = ¢) =a+b—-c¢, and 2(s —b) =a -b+ec.
l—cosa=2(s—b)2(s—c)

Hence 5 ibe

and, taking square roots, L
4 i1, _ 480 -0
(4) sin la ‘/ te
Similarly,

4 nlg = 59 —0)
4" sin 308 ac ’

" . s—a)(s-b

(4”) and sinly = JK*_()I%___)

Observe that the sides appearing explicitly under the radical
include the angle to be calculated.
To obtain cos e, we have

Ji + cos «
2

b2 + CZ - a‘l
t 2bc

cos ja

But l1+cosa=1

b4y -a

T 2

_b+c+a)btc—a)
h 2bc

_4s(s —a)

T 2bc

Hence

(%) cos 3a = Ji(ig_c__‘g
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Similarly,

’ s(s = b
(5" cos 18 = ( ac ),
” s(s—-c¢
(5") and cos iy = —(—0—6—)--

Dividing sine by cosine we have

(6) tan ta = ‘/gs—;é%;c)v

(s —a)(s —¢)

(6") tan 18 = G- b)
(6") tan 1y = W,

In (6) multiply both numerator and denominator of the frac-
tion by s — a. Then

1 [6-aG-bG-0

tan o =
s—a s
Also let r = (s—a)s —b)(s—-o)
s
Then:
r

(7 tan ia = s a

’ 15 _ r
(7) tan 38 = —

" 1., _ r .
7" tan %y P

All these formulas should be memorized in verbal form, so
that a single statement contains all three formulas of any one
set.

83. Mollweide's equation.

This is an equation which involves all six parts of triangle A BC
and may be used as a check formula to insure that calculated
parts of the triangle are correct. The derivation of the equation
follows.

= (Law of sines.)
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a—-b sina-sinf
c siny
_ 2 cos 3(a+ ) sin (a — B) -
N 2 sin 1y cos iy ' (371, §75)
But 3(a+B8) =90° — iy and cos i(a+ B) =sin Ly. (§12)

Therefore, on cancelling equal factors, we have Mollweide's
equation:

a—-b sinj(a—p)
¢ cosly

84. Solution of plane oblique triangles.

A triangle is determined, except in such cases as will be
specially mentioned, when three parts are given, of which one
at least must be a side. The calculation of the other parts is
called “ solving the triangle.”

Four cases arise, according to the nature of the given parts.

I. Ghiven one side and two angles.
II. Given two sides and their included angle.
III. Given two sides and an opposite angle.
IV. Given three sides.

The method for treating each case will now be considered.

85. Case . Given one side and two angles, as ¢, 8, a.
Formulas for finding the other parts, v, b, c.

v = 180° — (a + B).

From the law of sines,
sing ~~ siny

“%na T %na
Check. Tt is important to have a check on the accuracy of the
calculated parts. For this purpose use a formula not used in
the computations and involving as many as possible of these
parts.
In this case we use the law of tangents in the form:

(b+c) tan 3(8 =) = (b —¢) tan 3(B +7).
We might also use Mollweide’s equation.
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Example.

Given a = 400, « = 50°, g = 100°. To find b, ¢, ~.

Graphic solution.

This will give us a fair idea of what answers to expect. First calculate
v = 180° — (50° + 100°) = 30°. Lay off a line segment equal to a and
at its extremities construct angles 8 and v, prolonging their free sides

to meet at A (figure). Scale off the lengths of b and c. We find b = 520
and ¢ = 260 approximately.

Logarithmic solution.

Formulas.
v = 180° — (a++ B8).
b= aw; log b = log a + log sin g — log sin a.
sin o ;
S—?'L’; log ¢ = log a+ log siny — log sin a.
sin o

Check. (b4 c) tan (B —v) = (b —¢) tan 3(B+ 7).
log (b + ¢) + log tan (8 — v) = log (b — ¢) + log tan }(B+ 7).
The detailed solution follows. Four-place tables are used.
Given: a = 400, o = 50°, s = 100°.

Angle v. a= 50°.
B = 100°
a+ g = 150°. 180° — 150° = y = 30°.
Side b. Side c.
log a = 2.6021 loga = 2.6021
log sin g = 9.9934-10 log siny = 9.6990-10
12.5955-10 12.3011-10
log sin & = 9.8843-10 log sin « = 9.8843-10
logd = 2.7112 logc = 2.4168

b = 514.3. ¢ = 261.1.
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Check. b+c=T754 b—c=2532
B—v="70° B+ v = 130°
3B —v) = 35° iB+7v) = 65°
log (b+ ¢) = 2.8895 log (b — ¢) = 2.4034
log tan }(8 — v) = 9.8452-10 log tan (84 v) = 0.3313
sum = 2.7347. sum = 2.7347.

EXERCISES 39

1000, a = 50° B =175°

= 5.257, a = 62° 35, B =170°43".
= 7.918, B =177° 10, v = 64°50".
c =0.00835, p =121°35,  =35°41".
¢ = 3708, B =59°5, v =33°15'.
b =15.285, «a=130°18.3", v =22°35.2".

St e !
it

S oW

In the figure of §47 caleulate AD and BD from the following data.
7. m =350 ft., a = 40° B =T70°

8. m =22831t.,, «a=27°33, pBg=41°7.

9. m="T7T4.71t, «a=37°45.3, 3 =81°21.6"

10. In Exercise 15 of §49 find the distance from each point of observa-
tion to the top of the tower.

11, In Exercise 16 of §49 find the distance from each point of observa-
tion to the top of the tree.

12. In Excreise 3 of §56 ealeulate the distance from ship to lighthouse
at. the time of each observation.

86. Case ll. Given two sides and the included angle, as a, b, 7.

To solve the triangle we calculate 3(a + 8) as the complement
of 3v; then 3(a — B) is calculated by formula (3). Angles a
and B are then determined and hence all the angles are known.
We can then compute ¢ in two ways by means of the law of
sines. The agreement of the two values of ¢ furnishes a check
on the computations.

Formulas.

Yo+ B) = 90° — by,
a->b
a+b

sin v sin v
a= =b——"::
sin « sin 8

tan 3(a — B)

I

tan 3(a + B).

Check.



124 OBLIQUE PLANE TRIANGLES

Check. Duplicate calculation of side c.
Or use Mollweide’s equation.

Example.
Given b = 12.553, a = 20.635, v = 27° 24. 2’. Solve the triangle.

B

Graphic solution.

Construct angle v and on its sides lay off lengths a and b, starting
from the vertex. Complete the triangle, and measure ¢, «, and g.
We obtain ¢ = 11.0, « = 119°, 8 = 33°. A solution is possible provided
0 <~ < 180°.

Logarithmic solution.
Formulas.
$a+8) = 90° — 4.
log tan }(a — B) = log (a — b) — log (a+ b) + log tan i(a + 8).

log ¢ = log a + log sin v — log sin a.
log ¢ = log b + log sin v — log sin B.

The detailed solution follows. Five-place tables are used.

Angles « and 8.
v = 27°24.2'. 1y = 13° 42.1".
3(a+ B8) = 90° — 13° 42.1' = 76° 17.9".
a = 20.635 log (a — b) = 10.90752-10
b = 12.553 log (a+ b) = 1.52098
a+b = 33.188 diff. = 9.38654-10
a—b= 8.082 log tan 3(«+ 8) = 0.61295

log tan 3(a — 8) = 9.99949-10

3(a+ B) = 76° 17.9’ a=121°15.9".
3(a — B) = 44° 58.0¢ 8= 31°19.9".
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Side ¢ and check.

loga= 131460 logb = 1.00874
log siny = 9.66300-10 log siny = 9.66300-10
sum = 10.97760-10 sum = 10.76174-10
log sin a = 9.93185-10 log sin 8 = 9.71600-10
logc = 1.04575 logc = 1.04574
c=11.111,

Caution. Agreement of the two values of ¢ is not a complete check;
they may agree, yet both be wrong, due to an error in log sin v; check
this very carefully.

Check by Mollwewde’s equation.
a—b=sin=}(a—6)

, or, (a—>)cos}v=csini(a~8).

c CoS 3v
log (a - b) =0.90752 log ¢ = 1.04575
log cos ¥y =9.98746-10 log sin }(a - 8) = 9.84923-10
sum = 0.89498 sum = 0.89498

Note. If side b were greater than side a, the difference a — b would be
negative, as also the difference @ ~ 8. To avoid negative differences in
such cases, interchange letters in the formula for the law of tangents, and
write it
b-a
b+a

tan §(8 - a) = tan $(8 + ).

EXERCISES 40

Solve the following triangles:

1. a = 800, b = 895, ¥ = 60°.
a=2545 c¢=2160, B =52°30".
a = 223, b = 402, v = 101°40'".
b = 3124, ¢ = 8976, o = 125°32'.
b = .04544, ¢ =.06400, o« = 36°08'".
a =541.83, ¢ =327.68, B = 78°43.7'.

7. Apply the methods of this section to solve A ABC of Fig. 43, §52,
using the data there given.

8. Similarly solve A ABD of Fig. 46, §53.

9. An angle of a triangle is 40° and one of the including sides is twice
as long as the other. Determine the other two angles. Check by the law
of sines.

10. The difference of two of the sides of a triangle is 50 and the dif-
ference of their opposite angles is 30°. The third angle 60°. Solve the
triangle.

LR
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87. Case lll. Given two sides and an opposite angle, as a, b, c.
This is known as the ambiguous case. We begin by studying the
Graphic Solution. Lay off angle « and on one of its sides take

AC =b. With C as center and radius equal to a, strike an arc

of a circle. The figures show the various possibilities arising in

the construction, the first three for a < 90° the last three for

a > 90°.

¢ c
|a

A b a

o

=
&

©

ob-———-"ee——

Fi1a. 65

In each case the perpendicular from C on the other side of
angle « is equal to b sin . Inspection of the figures then shows
that

when o < 90° and a < b sin @, no triangle is possible;

when o < 90° and a = b sin ¢, a right triangle results;

when a < 90° and b > a > b sin «, two oblique triangles result;
when a < 90° and a z b, one oblique triangle results;

when @ > 90° and @ = b, no solution is possible;

when a > 90° and a > b, one oblique triangle results.

It is always possible thercfore to state in advance what the
nature of the solution in a given case will be.

In a given numerical example the nature of the solution al-
ways becomes apparent during the progress of the computations.
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Formulas. Given a, b, a.

siny _ b siny
sin « sin

siny’ sin v’
sin @ sin g

I

sin[i:gsina. v =180° - (a+B). ¢

B'=180° — B. 7 =180° — (a + B). ¢

Check. The agreement of the values of ¢ and ¢’ as calculated
from the two expressions for each of them furnishes a partial
check on the caleulations. It does not guard against an error in
log sin v, which may be checked independently. A more posi-
tive check is furnished by the law of tangents or by Mollweide’s
equation.

In carrving out the calculations according to the formulas

above, the various cases shown in the figures are indicated as
follows:

(a) log sin B = 0; no solution, or right triangle.
(b) retain both 8 and 8’; two solutions.

(¢) a+ B’ > 180° hence reject 8°; one solution.
(d) log sin 8 = 0; no solution.

(e) a+ B> 180° and « + B’ > 180°; no solution.
(f) Asin (c¢); one solution.

Example.
Given @ = 602.3, b = 764.1, « = 38° 17",

Graphic solution.

0 ' 500
Fi1a. 66

This is shown in the figure, from which the unknown parts may be
scaled off.
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Logarithmic solution.
Formulas.
logsin 3 =loghb—loga+logsine. =7 g =7
v = 180° — (a¢+ B). v’ = 180° — (a4 8').
log ¢ = log a+ log siny — log sin «,
= log b+ log siny — log sin 8.
log ¢’ = log a+ log sin v’ — log sin «,
= log b + log sin v’ — log sin #’.
Check. TUse duplicate calculation of side c.
The detailed solution follows. Four-place tables are used.

Angles 8, 8, v, v'.

log b = 2.8832 B = 51°50"; B = 128°10".
log a = 2.7798 a4+ 8=90° 7; a+ 8 = 166° 27,
diff. = 0.1034 v = 89°563'; v = 13°33".
log sin &« = 9.7921-10
log sin 8 = 9.8955-10
Stde ¢ and check.
log a = 2.7798 log b = 2.8832
log sin ¥y = 0.0000 log sin y = 0.0000
sum = 2.7798 sum = 2.8832
log sin « = 9.7291-10 log sin g8 = 9.8955-10
log c = 2.9877 log ¢ = 2.9877
¢ = 972.0.
Side ¢’ and check.
log a = 2.7798 log b = 2.8832
log sin v’ = 9.3698-10 log sin ' = 9.3698-10
sum = 2.1496 sum = 2.2530
log sin « = 9.7921-10 log sin 8’ = 9.8955-10
log ¢’ = 2.3575 log ¢’ = 2.3575
¢ = 2217.8.

EXERCISES 41
Solve the triangles whose given parts are:
a=311, b=374, «-=27°18.
a=.0878, b=.0972, o =65°20".
a=1143, ¢ =1346, o« =58°6.5"
b =272 ¢ = 5.56, B = 29°55".
b = 1392, ¢ = 3218, v = 123° 39",
a =482.63, ¢ = 550.27, a =57°28.3".

I ol o ol o
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88. Case IV. Given the three sides, a, b, c. .

The angles may be calculated from either the sine, cosine, or
tangent of the half-angles. When all three angles are wanted,
it is best to use the tangent. There is no solution when one side
equals or exceeds the sum of the other two.

Formulas.
s = -1~(a+b+c), r =‘/(s—a)(s—b)(s_c);
s
T . 13- " . 1, T
tan s« Pt tan 30 S tan 3v s

Check. 3(a+B+7) =90°% a+8+v = 180°.

Example.

Given a = 428.63, b = 806.26,
¢ = 542.45.

Graphic solution.

This is shown in the figure. By o .
measuring we find « = 29°, 8 = 112°, o 500

v = 38°. Fia. 67

Logarithmic solution.
Formulas.
log r = i[log (s — a) + log (s — b) + log (s — ¢) — log s].
log tan i« = log r — log (s — a);
log tan 18 = log r — log (s — b);
log tan 1y = log r — log (s — ¢).
Check. 3(a+B847v) =90°. a4+ B8+~ = 180°.

The detailed calculations follow. Five-place tables are used.

a= 428.63 log (s — a) = 2.66280 la = 14° 479

b= 806.26 log (s — b) = 1.91598 38 = 55° 51.6”

c= 54245 log (s — ¢) = 2.53935 3y = 19° 20.5

2s = 1777.34 sum = 7.11813 Check. 90° 00.0’

s = 888.67 log s = 2.94875

s—a= 460.04 diff. = 4.16938 a= 29°358
s—b= 8241 log r = 2.08469 g = 111°43.2
§—c= 346.22 log tan 3o = 9.42189 — 10 v = 38°41.0
Check. 1777.34 log tan §8 = 0.16871 Check. 180° 00.0

log tan }y = 9.54534 — 10
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Note. The four numbers s, s —a, s— b, s—caddup to 4s - (a + b +¢)
= 48 — 2s = 25, This checks the numerical work at this stage.

Students who wish to use the cologarithm may write
log r = i[log (s — a) + log (s — b) + log (s — ¢) + colog s7.
This makes the computation a little more compact.

EXERCISES 42

Solve the triangles whose given parts are:
a=112, b =86, ¢ = 98.

. a=.6852, b=.6284, ¢ =.6066.
a=5533, b=3033 c=39.30.
a=.00150, b=.00181, c =.00294.
. a=1626, b=1418, ¢ = 3075.

. a=3.2265 b=2.0842, ¢ =1.8187.

LN L

89. Areas of oblique plane triangles.

Referring to the figures of §78, we see that h is the altitude
drawn on side ¢ as base. Hence if K denotes the area of the
triangle, we have

(8) K = }hc = }acsinB. (h =asing.)

Hence, the arca of a plane triangle equals half the product of two
stdes by the sine of their included angle.

The arca is also expressible in simple form in terms of the sides.
In the formula above replace sin 8 by 2 sin 28 cos 8. Then

K = ac sin 18 cos 38

_ ac‘[(s - azu(:s - c)‘JS(s; b)’

by (4) and (5) of §82. Hence,

9) ‘ K =Vs(s—a)(s - b)(s—c) =1s.

When the given parts of the triangle are such that neither of
the above formulas applies directly, it is usually best to calcu-
late additional parts so that one of these formulas may be used.



90.
1
b = 5818,
a = 36° 56/
B ="72°6
2.
a = 91.95,
b = 29.25,
¢ = 83.30.
3.
¢ = 1307,

a = 81° 52,
v =55°41'
4,

b - 167.10,
a = 65° 49.8',
B = 38°37.4".
b.

a =0.2018,
b = 0.1466,
v = 58°47
6.

b = 1032,
c = 1368,
a=23°7.
1.
a =176.15,
b = 94.05,
a = 21°21,
8.
a = 2748,
b = 8966,
a = 148° 35,
9.
a = 0.04353,
b = 0.00458,
¢ =0.03951.
10.
b = 8310,
¢ = 6366,

v = 49°59.7'.

EXERCISES AND PROBLEMS
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11.
a = 2.152,

c = 1.589,
a=19°12.7.
12.

a = 1064,

b = 1408,

v = 73°
13.

a = 0.1968,

c =0.1183,

~ = 22°32.
14.

a = 3828,

b = 4146,

¢ = 2964
16.

b = 0.00279,

¢ =0.00233,

a = d7° 53’
16.

a = 2914,

¢ = 946,

B =13°11.7
17.

a = 0.000598,

¢ = 0.000360,

a = 63° 50,
18.

b = 7265,

¢ = 3218,

v = 48° 32",
19.

b = 0.5064,

¢ = 0.7458,

v = 10° 32.8'.
20.

a = 40.369,

b = 37.403,

¢ = 38.088.

21.

b = 64082,

a = 13°31,

B =15°9.4'
22.

b = 3236,

¢ = 3610,

v = 56°34.5".
23.

a = 0.01566,

¢ = 0.01307,

B = 42°27".
24,

a = 3459,

B = 44° 03,
v =67°10".
26.

b = 0.1974,
B =51°41.8,
v =93°46.1".
26.

a =0.0157,
b = 0.0428,
¢ = 0.0588.
27.

a = 385.2,

b = 455.3,
a =41°13".
28.

a = 165,

b = 345,

a = 69° 18,
29.

a = 632,

b =741,

a =27°18.
30.

a =10.33,

b = 5.03,

¢ = 6.68.

131

31.

b = 3110,

¢ = 1466,

a=52°11.2',
32.

a = 15.633,

b = 17.826,

c =43.785.
33.

a = 11782,

b = 142186,

B = 50°20.9".
34.

a =44.44,

b =77.78,

v = 58° 49,
36.

¢ = 0.03765,

« = 45° 20,5,

v = 120° 15",
36.

a = 10728,

¢ = 7574,

B = 104°20".
37.

b = 97.16,

a =21°13.9,

B = 126°26.4".
38.

a = 675,

¢ =375,

a = 100° 56.7".
39.

a = 0.00932,

b = 0.00850,

B =63°40".
40.

a = 0.0762,

b = 0.0761,

B =91°30".
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In any triangle A BC, whose sides, opposite angles «, 8, v, respectively,
are a, b, ¢, show that:

41, b(s - b) cos? % = a(s —a) cos? g

42. a =bcosy +ccosp.

43. (a - b)(1 + cosvy) = c(cos B — cos a).
cosa  cosB cosy a4+ b?4c?

u“, a b + c  2abe

B,

2

46. (b +c)(1 - cos ) = a(cos B + cosy).

47. (a® - b* + ¢?) tan B = (a? + b* — ¢%) tan1.
B

a v a
48, cot§+cob§+cot§ = cot2

46. (b+c—-a)tan%=(c+a—b)tan

B .Y
cot, Q cot §

s —a)(s —b)(s - c)

S

49. The radius of the inscribed circle is ‘) (

50. The diameter of the circumseribed circle is a csc a.

61. Find the lengths of diagonals and the area of a parallelogram two
of whose sides are 5 ft. and 8 ft., their included angle being 60°.

62. Two adjacent sides of a parallelogram are a and b, their included
angle v; show that the area is ab sin .

63. The sides of a triangle are in the ratio of 2 :3 : 4; find the cosine
of the smallest angle.

64. The angles of a triangle are as 1 : 2 :3; the longest side is 100 ft.;
solve the triangle.

66. The angles of a triangle are as 3 : 4 : 5; the shortest side is 500 ft.;
solve the triangle.

66. The sides of a triangle are 4527, 7861, 6448; find the length of the

median drawn to the shortest side. Ans. 6824.
67. In A ABC, a = 466, b = 572, ¢ = 321. Calculate the shortest alti-
tude. Ans. 261.5.

68. In A ABC, a = 336, b = 215, ¢ = 252. Calculate the length of the
shortest median.

Exercises 59-90, which follow, are problems in ¢ Heights and Distances,”
so-called; they indicate some of the applications of Trigonometry to men-
suration.

For example, the figure of Exercise 59 is a general figurc applying to
such problems as are illustrated by Exercises 71 and 72 below. The figure
of Exercise 70 applics to such problems as appear in Exercises 82 and 83,
which represent actual observations of the flight of an airplane and of a
meteor respectively.

In the figures, z, the unknown, is to be expressed in terms of the other
parts, which are regarded as being given by measurement. Right angles
are indicated by a double arc. In each case assume a set of numerical
values for the given parts and caleulate the numerical value of z.
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59. 60.
D D
X
X Cc
4 5 ! z /
A m B C A m B
sin a sin B. msin B sec a
T="GnB - cos (« + B)
See (§47). (AC =mseca; £ ADC =90° —
(a +B); then apply law of sines to
A ACD. Or, take £ = BD — BC.)
61. 62.
D
b m
m Cc
B
a 2a 7 a 7
A X B c A X B

T = m csc 2a.

= m cos a csc B cos (a + B).
(Note that A ABD is isosceles.)

(First find AC in A ACD.)

63. z = BC + CD,

T

BC = m sin o, !
CD = (n — m cos a) tan (a + B); Fi

or, z = BF + FD, M
BF = n tan a, t
FD = (500 o - m) — 1B i

n sec a mcos(a+ﬁ) i

A n B
sin @ sin B [tan (8 +7v) E
6. z ~m sin (8 — a) tang 1]
-m sin a siny . X
sin (8 - a) cos (B +7)
(First find CD as in Ex. 59; then BC, o

then CE; then z =CE — CD. This gives
first form; reduce to second form.)
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D

66. z = —2”} [eot a + Veot?e — 8.
(Two solutions). m
Cc

(Let £ BAC =g; then tang = g, and

2m "
tan (a + 8) = = expand tan (a + 8); sub-

stitute value of tan g, and solve for z.) A X B
66. 67.
D D
b
a
Cc
a
X a a
z = cot"(2 + cot a)- z = tan™! ( otb
a acot a
(cotz = (AB + BC) +a.) (Note that tan(z + a) =(a+b) + AB.)
68. 69.
D
A D
b
a Cc
a
A X B b C . A X B
z =acot (tan“t—l _0) - Given £ BAC = £ CAD.
b b+a
a z=a\y =4
(x+b=acot 4; A=tan‘15——o.) -a

70.
CD is 1 to plane of A ABC;

a and B are A& of A ABC;
v and & are A in vertical
planes.
sin B tan vy,
= "sin («+ B)’
sin a tan 8

R T P




EXERCISES AND PROBLEMS 135

71. From a level plain, the angle of elevation of a distant mountain top
is 5° 50’; after approaching 4 miles, the angle is 8°40’; how high is the
mountain?

72. From a point on level ground the angle of elevation of the top of a
hill is 14° 12’; on approaching 1000 ft., the angle is 17° 50’; how high is
the hill? Ans. 1186 ft.

78. From level ground the angle of elevation of the top of a hill is

11° 30’; after approaching 3000 ft. up an incline of 3° 27’, the angle of ele-
vation of the top is 21° 32’; how high is the hill?

74. From a point 60 ft. above sea level the angle between a distant ship
and the sea horizon (the offing) is 20’; how far away is the ship? (Consider
the surface of the sea as a plane, and the distance to the horizon 10 miles.)

Ans. 8640 ft.

76. A tower 100 feet high has a mark 40 feet above the ground. How

far from the foot of the tower will the two parts subtend equal angles?

’

76. A column 12 fect high stands on a pedestal 8 feet high. How far
from the foot of the pedestal (and in the same horizontal plane with it)
will column and pedestal subtend equal angles?

77. A flag pole 30 feet high, standing on ground which slopes upward
at an angle of 20° casts a shadow 50 feet long and extending directly
down the hill. What is the altitude of the sun?

78. The angle of elevation of the top of a building 100 ft. high is 60°;
what will be the angle at double the distance?

79. From a station on level ground due south of a hill, the angle of
elevation of the top is 15°; from a point 2000 ft. east of this station the
angle of elevation is 12°; how high is the hill?

80. On level ground, 250 ft. from the foot of a building, the angles of
elevation of the top and bottom of a flag pole surmounting the building
are 38° 43’ and 31° 2’ respectively; find the height of the building and the
pole.

81. A flag pole on a building subtends an angle of 7° 40’ at a point on
the ground 100 ft. from the building; on approaching 20 ft., the pole
subtends an angle of 7°50’; find the height of the pole and the building.

82. To determine the height of an airplane, simultaneous observations
from two stations were made as follows (see Ex. 70): m = 6236 ft.; a =
72°12', B =74° 10", v = 9°24', 6 = 9°37'. Show that the average of the
two values of h is 1803 ft.

83. To determine the height of a meteor, simultaneous observations
from two stations were made as follows (see Ex. 70): m = 18.3 miles;
a = 56°35", 8 =104°30", v = 53° 50', 5 = 56° 45’. Show that the average
of the two values of h is 72.0 miles.

84. On approaching 1 mile toward a hill, the angle of elevation of its
top is doubled; on approaching 4 mile more, the angle is again doubled;
how high is the hill? Ans. 3 V7 mi.

86. A building surmounted by a flag pole 20 ft. high stands on level
ground. From a point on the ground the angles of elevation of the top
and the bottom of the pole are 53° 5’ and 45° 11’ respectively. How high
is the building?
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86. A and B are two points neither of which is visible from the other.
To determine the distance AB, two stations C and D are chosen and the
following measurements made: CD = 500.0 ft.; £ ACD =30°25'15";
Z ACB =85°40'20"; £ BDC =35°14'50"; £ BDA =80°20’'25"; find

AB. Ans. 969.2 ft.
87. In a chain of three non-overlapping triangles, the following data
are known: AB = 1000 ft.
A ABC, A ACD, A CDE,
Z A = 44° 36/, Z A = 56°32, £ C = 55° 30,
ZC =40°0; Z C =50°20; Z E =T7°02;

calculate DE. (Express DE in terms of AB and the neeessary angles by
the law of sines.)
88. In a chain of four non-overlapping triangles, the following data are
known: AB = 11,289 meters.
AABC, ACBD, ADBE, ADEF,
LA =58°10"35", LB =86°500", LD =79°12"8", 4D =50°41'5",
LB =69°55'0"; £C =46°48'0"; LB =73°2910"; ZLE =45°20"40";

calculate EF. Ans. 19955 m.
89. The adjacent figure 8

shows a chain of four tri-

angles in which all the an- D F

gles, and AB=m, are m

known. To designate the

angles we use Cy, C,, C; for p

the three angles at C, and

similarly for the other ver- £
tices. Calculate in turn z,,

2, T3, 24, and show that ¢

sin 4, sin B; sin C; sin Dy

sin C; sin D, sin E; sin Fy

(Exercise 88 gives such a chain of triangles taken from the Transconti-
nental Triangulation of the U. S. Geodetic Survey.)

90. A tower 50 ft. high stands on the edge of a cliff 150 ft. high. At
what distance from the foot of the cliff will the tower subtend an angle of
5°? Ans. 59.1 or 513 ft.

91. A right triangle whose perimeter is 100 ft. rests with its hypotenuse
on a plane, the vertex of the right angle being 10 ft. from the plane. The
angle between the plane of the triangle and the supporting plane is 30°.
Find the sides of the triangle.

92. The sides of a triangle are 100, 150, 200 ft. At the vertex of the
smallest angle a line 100 ft. long is drawn perpendicular to the plane of the
triangle. Find the angles subtended at the farther end of this line by
the sides of the triangle. .

93. An equilateral triangle 50 ft. on a side rests with one side on a plane
with which its plane makes an angle of 60°. How far is the third vertex
from the plane?

94. As in exercise 93, if the triangle, instead of being equilateral, has

.
sides 40, 20, 30 ft. and rests on the shortest side. Ans. 4";/5.

Ty =m
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95. The sides of a triangle are as 4 :2 :3, and the longest median is
10 ft. Find the sides and angles.

96. The following measurements of a ficld ABCD are made: A to B,
due north, 10 chains; B to C, N.30° E., 6 chains; C to D, due east, 8
chains; calculate AD, and the area of the field in acres. (1 chain = 4 rods.)

Ans. 18.76 ch.; 7.578 A.

97. The following measurements of a field ABCDE are made: A to B,
due east, 25.52 chains; B to C, E. 40° 26’ N., 22.25 chains; C to D, N. 48°
26’ W., 33.75 chains; D to E, W.31°15'S., 18.32 chains; calculate EA
and the area of the field in acres.

98. In the ficld of exercise 96 how much area is cut off by a line due
east through B? Ans. 3.62 acres, south of dividing line.

99. In the field of exercise 97 where should an cast and west line be
drawn so as to bisect the area?

100. In the field of exercise 97 where should a north and south line be

drawn to eut off 30 acres from the western part of the area?
Ans. 10.892 ch. east of A.

101. If P be the pull required to move a weight W up a plane inclined
to the horizontal at an angle ¢, and u the coefficient of friction, then
sin? 4+ up cos ¢
cost —pusin g
Caleulate P when W = 1000 lbs,, 7 = 30°, u = 0.1.

102. In exercise 101, what is 7 if P = 1W and u = 0.1? Ans. tan™14%.

108. If I be the length of a plane inclined to the horizontal at an angle 7,
u the coeflicient of friction and g the acceleration due to gravity (32+ ft.
per see. per see.) the time in seconds required by a body to slide down the
plane is

P=W

g(sin t — u cos 7)
What is T when 1 =25 ft., i = 20°, u = 0.1?7
104. In exercise 103, find 7 when 1 = 100 ft., u = 0.1, T = 5 sec.

Ans. 20° 7"
When p = 1.2, what must be ¢ (angle of incidence) to give

T
a deflection of 10°? /

106. Find the total deflection of a ray which passes through a wedge
whose angle is 30° and index of refraction 1.4, if the ray enters the wedge
so that the angle of incidence is 25°, and moves in a plane L to the edge
of the wedge. Ans. 12°32'.

107. Solve exercise 106 when the angle of the wedge is «, the angle of
incidence 7, and the index of refraction u.

T -

105. When light passes from a rarer to a denser medium,
the index of refraction u is determined by the equation

sin 7
sin r




CHAPTER

Ix INVERSE FUNCTIONS.
TRIGONOMETRIC
EQUATIONS.

91. Inverse trigonometric functions.

Before proceding with this section the student should review
thoroughly §36, where the inverse trigonometric functions and
their principal values are defined and illustrated by examples.

Notation.

(a) Asin §36, when we write the symbol for an inverse fune-
tion with the first letter capitalized, such as

Arc sin %, Arc tan 1, Sec™! (- 2),

it shall be understood that the principal value is meant.
Thus: Arcsin i = 30°, Arctanl = Z, See! (- 2) = 120°.

(b) The non-capitalized form shall indicate the general value
of an inverse function. So the symbols

arc sin 1, arc tan 1, sec™! (- 2)
mean, in each case, the whole set of angles corresponding to the
given function value.

Thus: arc sin 1 = %+ 2nm and 5{ + 2nm;
arc tan 1 = g-i— 2nmr and — %’r + 2nm;

sec! (- 2) = 2375 + 2n7 and - %—W + 2nw.

138
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(¢) When a special notation has not been defined it is neces-
sary to state explicitly in each case whether the general value
or the principal value is meant. Thus:

6 = the general value of arc tan 2;
= the principal value of arc tan 2.

Where inverse trigonometric functions are used in other ficlds
of mathematics the reader is often left to decide for himself
what meaning to attach to the inverse function symbol.

By uxe of the definition of principal values the student should
cheek carefully the following statements.

(1) When r is positive, the principal value of each of the six
inverse functions,

Are sin x Arc tan x Arc cos z

Arcescx Arc cot z Arc sec z

T . .
lies between 0 and > inclusive of one or both of these values.

(2) When z is negative, the principal value of

Arc sin x Arc tan z
Are csc T Arc cot x
. ™ .
lies between 0 and — o in-
. . x positive
clusive of one or both of z negative b vp;’f i
ot V. 3
these values; C‘iz qfx;(biecll T | inverse functions
. o in quad. I
the principal value of a
Arc cos
Arc sec x '
z negative
. ™ . FR— -
lies between 5 and =, inclu- Sin~'z, Tanz,
2 Csctz, Cotlz
sive of one or both of these in quad. IV

values.

These statements are represented schematically in the ad-
jacent diagram.
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92. Graphs of the inverse trigonometric Functions.

If in the equation y = arc sin z we solve for £ we obtain =
sin y. The two equations are equivalent in that they express
exactly the same relation between z and y. Therefore we shall
study the graph of the equation x = sin ¥.

We may start with the equation y = sin z, the fundamental
sine wave. Interchanging x with y gives x = sin y, the inverse
function equation.

Therefore we obtain the graph of y = arc sin z by merely
interchanging the letters on the coordinate axes in the graph of
y = sin z.

-1 01 3w -1 01 3r -1 01
T === T T
NEE | Lo
\ el -
¥ : T j/ 2 ; T ' L —==
! N -0 X ! s
N ! L g 4
| 2 ! | 2 | )
() ! (c) | | (e |
] P
oTx © 10 % 0 \j 0] %
1 1 ] ! 1
v i -7 E ! === -z 1 T
N e ]
B T e R
| N 7 | \ | /,/
LY 3w oo i ar Y
y=sin 'x y=tan 'x 2 y=csc 'x
101 3¢ 101 r 1.0 1
T 2 T EI T
18 RS S|
T T == S T -
IE : S~ i /I |
! L VN | k. 1 '
N2 L IN 2 Pl
(b): (D) ! N ) ! i
e I,{ X ! |0 : X 1|0 I X
N P 4 ! .z A I
W ! 2 | \\\: 2 Tt=<_ ) |
I// | ! >~o AN II
\ ! | e~ { L
T =T === T | - ) \
i ] | | ) |
N 3w AN Qé[ e :
y=cos'x 2 y=cot 'x y=sec 'x
Frc. 68 -

The graphs of the other inverse functions are related similarly
to the corresponding direct functions.
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In the figures the principal values are shown by the parts of
the curves drawn in the full lines.

93. Examples.

1. The principal angle whose sine is -5 = ?

A , T
Are sin <—§—>=45 =7

2. The principal angle whose sine is — 72 =?

WY . a
Arcsm(—7) = —45 =-7
3. The principal angle whose secant is 2 = ?

Sec! (2) = 60° = -

4. The principal angle whose secant is — 2 = ?

Sec! (— 2) = 120° = %’—’-

6. The principal angle whose cotangent is — V3 = ?

Cot™ (- v3) = — 30° = — g
6. The principal angle whose cosine is — 0.8382 = ?
Arc cos (— 0.8382) = 180° — 33° 3’ = 146° 57".

7. tan (Arc sin 0.5) = ?
We have to find the tangent of the principal angle whose sine is 0.5,
That is, if y = Are sin 0.5, we have to find tan y.

Solution. From y = Arc sin 0.5 we have sin y = 0.5 = 3. Also,
y is in quadrant I. Therefore, taking ordinate = 1, distance = 2, we
obtain abscissa = v/3. Then

V3 V3

tany = L tan (Arc sin 0.5) = 3

V3~ 37

In this example it happens that y = 30°, so that we get immediately
V3 . .

tan y = tan 30° = ——3—3 But we can solve the problem without using

the value of the angle.
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8. tan (arc sin 0.5) = ?
We have to find the tangent of any angle whose sine is 0.5. That is, if
= arc sin 0.5 we have to find tan y.
Solutton. Proceeding as before we find abscissa = + V3.
1 V3 V3
tany = + V3 =+ 37 tan(arc51n05)—-+-—3—
9. tan Arcsin 2 = ?
Let y = Arcsin #; siny = %; y in quadrant I.
Ordinate = 2, distance = 3; abscissa = V5.
2v5

= ~——; tan Are sin

tanq——2——

2_
3
Obviously we would find tan (arc sin %) = ?:’)j)

10. tan Arcsin (— %) = ?
Let y = Arc sin (— 2); siny = — %; y in quadrant IV.
Ordinate = — 2, distance = 3; abscissa = V/5.

tan y = tan Arc sin (—

11, sec Tan'2 =7
Let y = Tan"1 2, or tan y = 2; y in quadrant I.
Take ordinate = 2, abscissa = 1; then distance = V/3.
sec y = sec Tan12 = v/,
We might also write
secy = \/l+tan2y=\/1+4= \/5

12. sec (2 Tan12) = ?
We have to find the secant of twice the principal angle whose tan-
gent is 2.

Let y = Tan"!2; tan y = 2; y in quadrant I.
To find sec 2y we first obtain cos 21/ = ¢os? y — sin? y.

From tan y = 2 we find cos y = T/_’ sin ¢ %5

cos2y=%—4=—%; sec2y=-34.



13. cos 3Sec! (— 3) =

?
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Let y = Sec™? (- 3); sec y = — 3; y in quadrant II.

We must find the value of cos 1y, the angle 3y being in quadrant 1.

COS%y=+‘/

Therefore

94.

14+ cosy

.

cos 3y =

EXERCISES 44

and cosy = o 1
2 Y=secy” "3
3 = cos iSec! (- 3).

In Exercises 1-20, state the exact value of the principal angle in degrees

and radians.

3
1. arc cos —5—-

2
tan™! (— —%)
sin~! (=1).
are tan V3,

sec™ 2.

L

are cos (= 1).
are ese (= 2).
cos™ (= 3).

L A i Sl

1
are tan —=-

V3

10. arc tan (- 1).

11.
12.

13.

14.

16.
16.

17.
18.

19.
20.

Also state the general value of the angle.

sin71 1.
sec!' 1.

arc sec - '~2— .
U V3
2

cset —--
v
cot™1 0.
arc cot (- V3).
cot~! V3.

ese™! 1.

(%)
arc sin\ — 5 .

tan=10.

In Exercises 21-40 obtain the principal angle to the nearest minute.

21.
22.
23.
24.
26.
26.
27.

In

41.
42.
43.
44,
46.
46.
47.

Are cos 0.2,
Tan™1 (- 3).
See~1 V3,

Are sec 4.

Cos™! (- 0.6).
Cos™' (1 = V2).
Arc tan 3

sin Are tan 3.
sin 2Tan™1 3.
cos 3sin™1 0.6.
tan Arc tan 3.
sec 2Cot™1 2.
tan 3tan™! 1.
cos Arc cot 2.

28.
29.
30.
31.
82.
33.
34.

Exercises 41-60 obtain the exact numerical values.

48.
49.
60.
61.
b2.
b53.
54.

See~1 (- 4).
Tan™t (1 + \/5).
Are sin (3).
Cot™1 (- 2).
Sin~' (V3 - 1).
Arc cot ().
Sin71(- 3).

cos 2Sin1 0.8.
sin tan~! 3.
sec Are sin (2).
tan 2Sec! 1.5.
sec fcos™! yy.
tan Arc csc 2.
cot 2Cos™ 0.6.

36. cot™! (2 — V5).
. Arc csc 2.5.

. Tan™' (- §).
Cse™t (1 = V'5).
. Arc sin 0.8.
Cse™ (~ 1.5).

66.
56.
67.
58.
69.
60.

cot 3tan~1 12,
cos Arc cos 0.3.
cos 2Cot™1 0.6.
esc 3sec™! 2.
cot Arce sec 1.5.
sin 2Sin~10.6.
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95. Equations involving several inverse functions.

Example 1.
Show that Arc sin § = Arc cos $.
Let o = Arcsin §; 8= Arc cos §.
Then sina = %; cosp=%.
To prove that a=f,
or that sin e = sin 8.

(The sine function is used for convenience; any other function might
be used.)

From cos =% weobtain sing= vV1—costg=32.

Therefore sin « = sin 8, and also « = 8, since « and 8 are both acute
angles.

Example 2.
Show that Tan-! 24 Tan—' 3 = 135°.
Let a=Tan12; g= Tan'3.
Then tan « = 2; tan g = 3.
To prove that a+ 8= 135°%
or that tan (e + 8) = tan 135° = — 1.
Proof. tan (a+ B8) = tanattang _ 2+3 - 1.

l—tanatanpg 1—2.3

Therefore a4+ g = 135°, since « and g are positive acute angles and
tan (a+8) = — 1.

Example 3.
Show that Sin~! ¢ + 2 Tan12 = .
Let z=Sin1%; y=Tan™2.
Then sinz = §; tany = 2.
To prove that r+ 2y =m,
or that 2y =n—uz,
or that sin 2y = sin (r — x) = sinz = §.

From tan y = 2, and the fact that y is a positive acute angle, we find

that sin y = —3—5 and cosy= \—ig

Then sin 2y = 2siny cos ¥y = § = sin z.
Example 4.

~ Show that Tan"' § + Tan~!'2 4 Tan~'8 = .

Let z=Tan1%; y=Tan'2; z=Tan!8§;

then tanz =4; tany =2; tanz=38.
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To prove that T+Y+2=m,
or that THy=7-2,
or that tan (x +y) = tan (r —2) = — tanz.

tanz+tany 42

Now tan($+y)=1_tanxtany—1-%

=—8=—tanaz.

Example 5.

Show that Tan-!a = Sin~! ——— when a is positive.
14 a?

Let z=Tan'a and y= Sin-!

. a
then tanz =a and siny Vit s
To prove that z =1,
or that sin z = sin y.

Now since z and y stand for principal values, and a is positive, both
angles are in the first quadrant.

Then from tan z = a we find

Sing = ———»
V14 a?
which is sin y.
96. EXERCISES 45
Verify each of the equations below.
1. Arc tan 3% = Are cos ;. 7. Cot™' 2 + Csc™! V10 = 45°.
.3 .4 0 V3 Vi
2. Arc sin 5t Arc sin 5% 8. Sin-! _zé +2 Cos™! .2_3 = 120°,
3. Arcxin§ = Are tan §. 9. 2 Arc tan 4 + Aresin 1% =
4. Arctan § + Arc tan § = 45°. 10, 2 Arc cot 2 = Are sec 5
6. 2 Tan 1% = Tan1 1%, 11. 3 Sin7'} = Sin~' {}.
6. Tan™!'(-3) = Tan1 2 — 3. 12. 4 Tan™! 1. Tan™! L + I
4 5 239 " 4

13. Arctan }4 + Arctan? + Arc tan (- ) = .

14. Sin~'$ +Sint 8 + Sin~' 13 = ’—2’

16. Arccos §3 +2 Arc tan } = Arc sin £.
16. 2 Tan1% — Csc™' § = Sin™! §3.
17. Sin7'a = Cos™! V1 —a? if a > 0.

18. 2 Tan™' m = Tan™! Zm 5
1-m

19. 2 Tan! (cos 20) = Tan~! (

2

Note. The equation of Excrcise 12 was used to calculate the value of
w to 707 places. (See American Mathematical Monthly, vol. 31, page 393,
1924.)

cot? — tan? 9).
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97. Trigonometric equations. Special methods.

In §41 we solved some trigonometric equations, following a
rule there stated and using the formulas of group A. This
section should now be reviewed.

We now have at our disposal all the formulas of the other
groups and shall illustrate by some examples how they may be
used to solve trigonometric equations.

Example 1.
2sinfr~3sinzcosx =1,
Since 2 sin?z = 1 — cos 2z and 2 sin z cos & = sin 2z, we have
1—cos2r—3sin2zx=1, or tan2zx= — 2,
Hence 2z = tan! (- %) = - 33° 41’4 n 360°, or 146° 19’ + n 360°.
z = — 16° 50.5’ + n 180°, or 73° 9.5’ + n 180°,

Exercise. Check these answers. Solve the given equation by express-
ing cos z in terms of sin z.

Example 2.
sin 3y — sin 2y = 0.
By formula (24) of §75 this becomes
2 cos $y sin 3y = 0.
Hence cos 3y =0 or sin 3y = 0; %y = cos™' 0, or 3y = sin~10.
y =% cos 10 = 2(90°+ n360°) or #(— 90°+ n360°) = + 36° + n 288°
y=2sin"10=2-nr = n 360°

Example 3.
cos  + cos 3z + cos 5z = 0.
Since cos z + cos 5z = 2 cos 3z cos 2z,
we have 2 cos 3z cos 2z + cos 3z = 0, or cos 3x(2 cos 2x 4 1) = 0.
Hence cos 3z = 0, or cos 2z = — %; 3z = cos™ 0, or 2z = cos™! (— %).

z = % cos~1 0 = 1(90° + 7 360°) or 3(— 90°+ 7 360°) = + 30°+ n-.120°
z =3 cos? (— %) = 1(+ 120°+ n 360°) = + 60°+ n 180°.

Example 4.
sin 3z = cos 5z.

Change 5z to the complementary angle 90° — 5z:
sin 3z = sin (90° — 5z); sin 3z — sin (90° — 5x) = 0.
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Use formula (24), §75, to change to a product:
2 cos 3z 4 90° — 5z sin 3z — 90° + 5z -
2 2
2 cos (45° — x) sin (4 — 45°) = 0.
Equate each factor to zero:
cos (45°—z) =0, or sin (4r — 45°) = 0.
The first factor gives
45° — z = cos7' 0 = = 90°+ n 360°.
z = —45°—-n360° or 135°— n360°
(The term — n360° may also be written 4+ n 360°, since n stands for
any integer, positive or negative.)
The second factor gives
4z — 45° = arc sin 0 = n 180°.
z = 11° 15" 4+ n-45°.

Check. Both sets of answers check.

0,

Note. The equation ese 3z = see Hhr may be changed to sin 3z = cos 5z
by taking reciprocals.

Example 5.
tan 40 tan 50 = 1.
sin 49 sin 50
cos 48 cos 58
cos (464 56) = cos 99 = 0; 96 = + 90°+ n 360°.
0 =+ 10°+ n-40°. ’

= 1; cos 46 cos 50 — sin 460 sin 50 = 0.

We must rule out any values of 6 such that cos 46 = 0 or cos 50 = 0,
because these occur as divisors in the given equation.

Exercise. Check the answers for several selected values of n.

Example 6.
4sin6+4 3coso =2
We might reduce to sin 8 or cos 8 and proceed according to the rule
of §41, Example 4. A method much preferred in practice is as follows.
In place of 4 and 3 introduce two new constants m and M such that

4=mcos M, m=VEF3R =5,
) whence
3=msin M; M = tan™ 4.
The given equation then becomes
5(sin 6 cos M 4 cos6sin M) =2 or sin(6+ M) = 3.
0+ M =sin'4, or 6=sin1%—- M.
= sin~!  — tan! §.
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Exercise. Given asind +bcosd =c.

Show that the general solution is

—‘L_“.T — tan™! é

Va? + b? a

Indicate some values of a, b, ¢ for which there would be no solution.

6 = sin™!

98. Graphic solutions.

Such solutions, even when they are only rough approxima-
tions, are often very useful. Moreover, an approximate value
may be corrected by successive trials to any desired degree of
accuracy.

Example 1.

Solve graphically: sin 204 sin 6+ 3 = 0.

We want the values of ¢ which reduce the expression
sin 20 + sin 6 + 3 to zero.

Let y = sin 20 + sin 0+ %.

Calculate y for a series of values of 6, as 6 = 0°, 10°,20°, . . . , and
plot the points (6, ) in rectangular coordinates. The resulting curve

N\
\

T

|/

—t—— +—t—t+—t—+ VIll\vf{/a

0° 90° 180° 270° 360°
Fia. 69

will show the approximate values of 6 for which y is zero. Any con-
venient scales may be used on the axes of 6 and y.
Let the student read off the required solutions from the graph.
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Nore. If the number % in the given equation is changed, let us say, to
1}, the effect on the graph will be to raise the entire curve one unit; the
same effect could be produced by lowering the angle scale one unit.

EXERCISE

By means of this graph solve the equations

(a) sin 20 + sin 6 + 1.5 = 0;
(b) sin 26 + sin 0 = 0;
(e) sin 26 + sin @ = 1;
(d) sin 20 +sin 6 = 1.

Example 2.
Solve graphically: tan z = iz, (x in radians).

(a) Draw the graph of -4 =2 0 2 4
y = tan x. / ’
(b) Draw the graphof y = jz. 2 / ]
(¢) Note the points where /
these graphs intersect. The / 0 4
values of z at these points are T%Z B y/

S

the required solutions. The ~2[]
figure indicates z =0 and -
z = + 4.3 radians. Fia. 70

Example 3.
Solve graphically: E—-09sinE = g

This is an example of “ Kepler's Equation,” a basic equation in the
calculation of the position of a planet in its orbit. Angle E is assumed
to be in radian measure.

We may solve the equation for sin E: P° 90° 180°

E-T 1 /

sin E = __3
T 09 o / "
Ly
(a) Draw the graph of % = sin E. —E
E - % 1 /
(b) Draw the graph of y = . A
0.9 Fia. 71

The first graph is the fundamental sine wave; the second is a straight
line. This line was obtained by locating two points on it by use of
equation (b) which gives y = — 1.15 when E = 0 and y = 2.30 when
E = x. The second point is outside of the bounds of the figure.
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The graphs have but one point in common at which we might esti-
mate the value of E as about 112°.

A graphic solution may be regarded as a trial value and corrected
by use of the tables. We illustrate by correcting the value of E just
found. We compare the value of 0.9 sin £ with that of E — #/3,
and change E to make them more nearly equal.

E E- % sin E 0.9sin E Diff.
112° 52° = 0.908 rad. 0.927 0.834 +0.074
110 50 0.873 0.940 0.846 +0.027
108 48  0.838 0.951 0.856 - 0.018
109 49  0.855 0.945 0.850 + 0.005
108° 50° 0.852 0.947 0.852 0.000

The new value of E is 108° 50’. This could be further corrected by
use of more extensive tables.

EXERCISES
Solve graphically. Check and correct by use of tables.
1. 3tanz = 2r. 4. 3cosz =2r.
2. 2sin z = z. 5. 08sinz =z - w/3.

3. 3sinz = 2z. 6. 0.5sin z =z — 30°.



CHAPTER

X ANALYTICAL
TRIGONOMETRY

99. Polar coordinates.

We have made repeated use of the system of rectangular
coordinates, in which the position of any point in the plane is
defined by its abscissa and ordinate. A second system of co-
ordinates defines the position of a point with reference to a
single fixed line, called the initial line, and a fixed point on this
line, called the origin or pole.

F16. 72

In the figure, let OX be the initial line and O the pole. We
shall consider OX as the positive direction of the initial line.
Tet P be a point in the plane. The position of P is then
fixed by its distance OP = r from O, called the radius vector,
and by the angle XOP = 6, called the vectorial angle. Then 7, 6
are called the polar coordinates of P, and the point is indicated
by (r, ). Similarly P, is the point (ry, 6;). The coordinate 6 is
positive when measured eounter-clockwise from OX; r is posi-
tive when measured from O along the terminal side of 6; it is
negative when measured from O along the terminal side of 8
produced back through O. Thus the points (5, 30°) and (- 5,
210°) coincide. Similarly with (- 3, 135°) and (3, — 45°).

151
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100. Relation between polar and rectangular coordinates.
Let O be the origin and OX the initial line of a system of
polar coordinates (figure). Let OX and

Y
OY be the axes of a rectangular system P
of coordinates. Then
r
r=Va?+yl ’
z =rcosb, ;
y = rsin 6, 0=tan“% 0| X M X
Fra. 73
EXERCISES

Plot the following points:

(1, 45°); (-1, 45%); (3, 60°); (3, - 60°); (4» g); (2’ “%T); (% "55)

2 5eY. (157). (1 37). (oo
(“"39_?)1 (17 2)!( ly—2)) (7")800)-

Calculate the rectangular coordinates of each of these points, taking O as
origin and OX as the z-axis.

101. Curves in polar coordinates.

When r and 6 are unrestricted, the point (r, §) may take any
position in the plane. When 7 and 6 are connected by an equa-
tion, the point (r, 6) is in general restricted to a curve, the
equation between r and 6 being called the polar equation of the
curve.

Example 1.

Trace the curve whose polar equation is r = sin 6.

Assume a series of values for 9, calculate the corresponding values of
r and plot the points whose coordinates are
corresponding values of r and o.

i
|
!
: 1 /
!
|
I
|
|

6 = 0°, 30° 60° 90° 120° 150°, 180°, //

r =0, 0.5, 0.87, 1.0, 0.87, 0.5, 0, \\ Y

6 = 210°, 240°, 270°, 300°, 330°, 360°. S //’,/

r = — 0.5, — 0.87, — 1.0, — 0.87, — 0.5, 0. 0 X
Fi1g. T4a

‘The graph is shown in the figure. For values of ¢ > 360°, and for
negative angles, no new points are obtained. The curve is a circle, with
radius = }.
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Example 2.
Trace the curve r = 24.

Here 6 is understood to
be in radians.

0=0,5 % n . 2
3
r=0, ;’ , 72’5,21r,...,41r.

For negative values of 6 we
get corresponding nega-

Fia. 74b

tive values of r. The curve is the double spiral in the figure, the
branches shown by the full line and the dotted line being obtained from
the positive and the negative values of 6 respectively.

EXERCISES
Trace the following curves:
1. r =2sine. 6. r=1+cos@. 9. r = cos?é.
2. r =cos0. 6. r =2 +sino. 10. r = cos 24.
3. r=tané. 7. r0=1. 11. r = 4.
4. r =secd 8. r=20. 12. 0 = /4

102. Complex numbers.

Let a and b denote any two real numbers and 7 = v/ — 1.
More precisely, ¢ is defined by the equation 22 = -1. Then

the quantity a + b is

Y.

P

b
0| a M X

Fiag. 75

called a complex number. It may be
considered as made up of a real units
and b imaginary units, a X 1 + b X 7.

Real numbers can be represented by
points on a straight line. To represent
complex numbers geometrically, we re-
quire a plane.

Let OX and OY be a system of rec-
tangular axes, and P a point in their

plane having coordinates (a, b) (figure). Then the vector OP
is considered to represent the complex number a + b, and the

extremity of this vecto

r, P, is called the representative point

of the complex number a + b.
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When b = 0, P lies on the z-axis, and the complex number
reduces to a real number. Thus all points on the z-axis corre-
spond to real numbers, and this line is called the axis of real
numbers.

Let P (figure) be a point (z, ) in the plane, and let z be the
complex number represented by P. Then

z=z+ .

Now take OX as the initial line and O the pole of a system of
polar coordinates. Let the polar coordi- v P
nates of P be (r, 6).
Then r y

x =1 cos0; Yy = rsin 6.
Hence ol ’ X M X

z=2x+1 =7 (cos 6 + 1 sin 6). Fra. 76

Here r is called the modulus and 8 the angle of the complex
number 2.

When r is fixed, and 6 is changed by integral multiples of 2,
we obtain a set of complex numbers of the form,

z =r[cos (0 + 2n7) 4 7 sin (6 + 2nw)];
n=0 +1 +2 ....

All these numbers have the same representative point.

103. Addition of complex numbers.
The sum of two complex numbers,

Y4

z=x+1y and 2 =2z’ 4+,
is defined by the equation
242 = (x4 2)+ily+9).

We proceed to consider this sum geometri- —
cally. Let P, P’ (figure) be the representa-
tive points of 2z, 2’ respectively. On
OP and OP’ as adjacent sides construct the parallelogram
OPQP’. Then Q is the representative point of z + 2’. For the

Fia. 77
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coordinates of Q are (z + z’, y + y’). This amounts precisely to
vector addition of the vectors OP and OF’, §52.
The difference of the two complex numbers z and 2’ may be
defined by the equation
z-7 =(@-2)+iy -y).
Exercise. Give a geometric construction for the representative point

of z -2

104. Multiplication of complex numbers.
The product of the two complex numbers,

z=r(cos@+17sind) and 2’ =7'(cos 8 + ¢sin @),
is defined by the equation
2z’ = rr’(cos 6 + 7 sin 6)(cos 6 + 7 sin §'),
the binomials to be multiplied in the usual way; thus:
2z’ = rr'[cos 6 cos 8’ — sin 0 sin 6’ + (sin 6 cos 8’ + cos @ sin §') ]
= rr'[cos (0 + 0') + 7 sin (6 + 6)].
Thercfore the modulus of the product zz' cquals the product of the

moduli of z and ', and the angle of 2z’ equals the sum of the angles
of zand 2'.

By repeating this process we find
222" = rr'r" [cos 0+ 0 +60") + ¢sin (046" +6")]
and so on, for any finite number of factors.
When the factors are all equal this reduces to
2" = r*(cos nd + ¢ sin nd),
n being a positive integer.
Exercise. Show that the above definition of the product 2z’ is the same as

22’ = xz' - yy' +i(zy’ +2'y),
whcre z2=zx+1y and 2’ =2z +y'.

105. De Moivre's theorem.
When r = 1, then 2z = cos 8 + 7 sin 6. Hence by the above
result we have

(cos 6 4+ 7 sin 8)" = cos nf + 7 sin n4.
This equation contains what is known as De Moivre’s Theorem.
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106. Definition of z”.

Let p be any real number, positive or negative, rational or
irrational. Then by analogy with the result for z* when n is a
positive integer, we define 27 by the equation

2P = r? (cos pf + 7 sin ph),
where z =71 (cos 6 + 7 sin 6).
Then, if q also be real, we have
2% = 1 (cos g8 + 7 sin ¢f),
and
2P2% = r*+ecos (p + )8 + ¢ sin (p + )] = zrte,
All the rules for exponents will be the same when the base is a
complex number as when the base is real.

Examples.
1. Find the modulus and angle of z = 3 — 44.

Here 3=rcosd;, —4=rsing.
r=VEFLE=05Htang= ——34,

or, 6 = tan'(— %). ,

The angle lies in the fourth quadrant. Fra. 78

2. Express 2(cos 150° — ¢ sin 150°) in the form z 4 7.
2(cos 150° — i sin 150°) = 2(— %f ~5)=-Vv3-i

3. Find the value of (1 + 7)2(2 — 37).
14122 =14 20412 =20,
(1412)2(2 — 3) = 21(2 — 3t) = 40 — 612 = 6 + 41.

EXERCISES 46

1. Find the modulus and angle of
1-4; 4+35; —5+113; 2; 25 (1+i)1 -d);
3v3 +3i; (3V3 -3 (1+iV3)(V3+i)
Give figure for each case.
2. Find the value of:
(1494 (1 =34 (1+ 001 +20)%5 (3 -3)%V3+4); (1-3iV3).
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107. Theorem.

If P and Q are any real quantities and iof P +1Q = 0, then
P=0and Q =0.

Proof. By hypothesis, P+17Q =0 or P = — Q.
Squaring, Pz=—qQ2
Now P? and @? (if not zero) must be positive, hence the last

equation states that a positive quantity equals a negative quan-
tity. This is impossible unless both quantities are zero.

P=0 and Q =0.

This theorem is used to replace a given equation of the form
P+iQ =0

by the equivalent equations

P=0;Q=0.
As a corollary we have, if

P +1Q = P' + Q)

then P=P and Q=¢Q'.
Tor the given equation is equivalent to

(P -P)+:Q-Q) =0

108. The nth roots of unity.
To solve the equation
2" —-1=0, or 2" =1,

replace 1 by its value cos 2k + 7 sin 2k, k being an integer.
We obtain
" = cos 2km + ¢ sin 2kmw.

. 1
Taking the nth roots of both members we have, by putting p = n
in §106, x = Cos Zkx + ¢sin 2,
n n

Here & may be any integer; letting k =0, 1, 2,---n — 1, we
obtain n distinct values of z, that is, n distinct nth roots of 1.
For other values of k¥ we obtain the same roots over again.
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Geometric representation of the nth roots of unity.
The nth roots of 1 are,

k=0; :t:1=cosO+isin0=1,
=1: 2r . . 27
=4 Zy = COS — + 7 SIn —»
n n
k =2; x3=cosé7—r+isin4—7ra
n n

k=n-1; =z, =005&L~7——zl)1+isin2(n;1)".

Fra. 79

The representative points of xy, s, 3, - -+ z, are obtained as
n equally spaced points on a circle of radius 1, the coordinates of
the first point being (1, 0) (figure).

To obtain the nth roots of any number a, we need only mul-
tiply one of its arithmetic nth roots by the nth roots of unity.

Example.

Find the cube roots of unity
These are given by = = cos 27 3 L 'n2§ ; k=0,1,2.
k=0; x =cos0°+17sin0°= 1.

k=1; 2= cos 120+ sin 120° = — 5+ 2 V3.

k=2; z3=cos240°+ 7sin240°= — ; — 5 3.
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To find the cube roots of 8, we have V8 = 2v1 =2; — 141 v3;
—1—-17v3. (We here use V8 to denote any cube root of 8, not
merely the principal root.)

EXERCISES 47

1. Solve the equations z* — 1 = 0 and z* — 8 = 0 algebraically and com-
pare with above results.

Solve the following equations by the trigonometric method and give a
figure for each case:

2. zt=1. 1.

4. z° = 6. z8=1.
3. z¢=8l. 6. x° =32. 7. z¢

27.

[l

109. To express sin nd and cos nd in terms of powers of sin § and
cos 6, n being a positive integer.

We have (cos 8 + ¢ sin 6)* = cos nf + ¢ sin nf.
Expand the left member by the binomial theorem, reduce all

powers of 7 to + 1 or + %, and group the rcal terms and those
involving i. The above equation then hecomes

n_(ll2—‘ 1) (mosn—i.’ 0 Sin2 0 + . .)

n(n — 1)(n - 2)
3!

cos nf + 7 sin nf = (cos" —

+ i(n cos"l@sing — cos™3 6 sin® 0 +- - )

This equation has the form P + iQ = P’ + Q.

Hence by the corollary in §107 we have
n(n — 1)

+ = nfg —
cos nf = cos™ @ o7

cos" 20 sin?f +---.

n(n — 1)(n - 2)

sin n0 = n cos™ 16 sin @ — 31

cos"30sin30 4

Examples.

sin 40 = 4 cos® 0 sin 8 — 4 cos 6 sind 6.
cos 50 = cos® § — 10 cos® 0 sin? 6 4+ 5 cos 6 sint 6.

EXERCISES 48
Expand in powers of sin 6 and cos 6:

1. sin 34. 3. cos 44. 6. sin 66.
2. cos 34. 4. sin 56. 6. cos 76.
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110. Exponential values of sin x and cos x.
We shall assume the following expansions‘

2
e =1+a+5; +3,+

. A

sinz =z — 3~!+95%—---,
$2 14

cosz=1-— 2—!+a—---.

These expansions are derived by the methods of Differential
Calculus. The letter ¢ stands for an irrational number, e =
2.7182818 +, which is the base of the natural system of loga-
rithms. The last two series are used for calculating sin 2 and
cos z, by putting for z its value in radians. Thus, to calculate
sin 10°, put z = 10° = 0.17453 radians. (Table V.)

In the first series replace « by iz and define the result to be
¢'*; noting that

2==-1 #=-1 t=1,--
we obtain
. . r B b
e”=1+zx-—m-—z3~!+;ﬁ+1-5—!—"'
¢ o o
=(1—2—!+4—!— )+z< 3!+5—!—---)-
Hence
e = cos T + 7 sin z.

Replacing z by — «;
e"? = cos ¢ — 7 sin z.
From these equations we find
ciz + e~ iz . eiz —_— e—i:

COST = ———; SINZ = :
2 ’ 27

These formulas are useful in many applications of the trig-
onometric functions. :

EXERCISES
Using the exponential values of sin z and cos z, show that:
1, sin?z + cos?z = 1. 3. cos 2z = cos? z — 8in? z.

2. 8in2z = 28in z cos z. 4, cos*z —sin*z = cos?z — sin? z.
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111. The hyperbolic functions.
In the expansions for sin z and cos z given at the beginning of

§110 replace z by iz and define the results to be sin iz and cos iz
respectively. We obtain

3 4]
siniz=i(:c+§—!+§_!+...>;

2 4
cosix=1+§~'+§—' 4+

These equations we consider as defining the sine and cosine of

the imaginary quantity z.
Multiply the first equation by 7 and subtract the result from

the seccond. We obtain

er.

coS 1z — 7 sin 12

[

Change z to — x; cos ix + ¢ sin 72
Note that, from the definitions of cos 7z and sin 7z,
cos (— 2x) = cos 1z and sin (- 72) = — sin 2x.

Combining the two preceding equations by addition and sub-

traction, we find

x e~z r . e—Z

COS It = ;o osinir =1
2 2

We now define
Hyperbolic cosine of x = cosh z = cos 1z;

. . |
Hyperbolic sine of © = sinh x = 7 sin a2,

Then

—r erT — ¢ %

R A
cosh z = 5 sinh z = 5

These functions are related to the hyperbola somewhat as the

circular functions to the circle. -
Their values can be calculated readily from the values of e*

and ¢* given in Table VI.
The remaining hyperbolic functions are defined by the equa-

tions
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sinh z 1
tanh z = ; cothx = ——;
cosh a’ tanh z’
1 1
sech x = ——; eschx = ——-
cosh = sinh x
EXERCISES
Show that:
1. sinh 0 = 0; cosh O = 1. 5. cosh (- z) = cosh z.
2. sinh 7 = 0; cosh wi = —1. 6. cosh?z — sinh?z = 1.
3. sinh 32‘1 = 7; cosh 1‘; =0. 7. sech®z = 1 — tanh? z.
4. sinh (- z) = —sinh x. 8. —csch?z =1 — coth?x.

Draw the graphs of the equations (see Table VI):

9. y=e" 11. y = cosh z.
10. y=¢". 12. y =sinhx.



CHAPTER

Xl SPHERICAL

TRIGONOMETRY

112. Spherical geometry.
~ We devote this article to a review of some facts concerning
the geometry of the sphere.

(a) A plane section of a sphere is a circle. When the plane
passes through the center of the sphere, the section is a great
circle; otherwise a small circle.

(b) Any two great circles intersect in two diametrieally oppo-
site points and bisect each other.

(c¢) The two points on the sphere each equally distant from all
the points of a circle on the sphere are called the poles of the
circle. A great cirele is 90° distant from each of its poles.

(d) A spherical triangle is a figure bounded by three circular
arcs on a sphere. In this chapter we consider only triangles
whose sides are arcs of great circles. Any such triangle may
therefore be considered as cut from the spherical surface by the
faces of a triedral angle whose vertex is at the center. The face
angles of this triedral angle measure the sides of the triangle,
and its diedral angles the angles of the triangle.

The arcs forming the sides of a spherical triangle will be con-
sidered as measured in degrees or in radians. Their lengths in
linear units can be obtained if the radius of the sphere is given.

We shall also assume that each side and each angle is less
than 180° in general.

163
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(e) If a triangle be constructed by striking arcs of great circles
with the vertices of a given triangle as poles, the new triangle is
called the polar triangle of the given one.

This method of construction will, in general, yield eight
triangles whose vertices are the poles of the given triangle. One
of these, and only one, satisfies the following relations.

Let the sides of the given triangle be a, b, ¢; its angles «, 8, ¥;
let the sides of the polar triangle be a’, b’, ¢’ and its angles o/,
8, v'; we assume that vertex A is the pole of side a’; vertex B
of side b’; and vertex C of side ¢’;
then

a =180° — «;
a =180° - a;

and similarly for the other sides
and angles. That is, any part
of the polar triangle vs the supple-
ment of the part opposite in the
given triangle.

The adjacent figure shows a
triangle ABC and its polar triangle A’B’C’; A is the pole of
arc B'C’, B of arc A'C’, C of arc A’B’.

(f) The sum of the angles of a spherical triangle is greater than
180° and less than 540°. The amount by which the angle sum
exceeds 180° is called the spherical excess of the triangle. Two
formulas for calculation of the spherical excess are given in
§126.

The area of a spherical triangle vs to the area of the sphere as its
spherical excess, in degrees, is to 720°. That is, if E be the
spherical excess in degrees and K the area of the triangle, and R
the radius of the sphere, then

K E

E
— = = 2 _ .
e =y O K=4Boy,

(g) The sum of the sides of a spherical triangle is less than
360°.
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113. The terrestrial sphere.

To illustrate some of the definitions just given we shall relate
them to the surface of the earth considered as a sphere with
radius R = 3960 miles.

The earth’s axis of rotation meets the surface at two points,
P and P, the north geographical pole and the south geographical
pole.

A plane through the center of the earth and perpendicular to
axis PP’ cuts the surface in a great circle called the equator.

A plane perpendicular to axis o

PP’ at any point between P
and P’ other than the midpoint » G
cuts the surface in a small circle

called a parallel of latitude. The

tropics (Cancer and Capricorn) ¢

and the two arctic circles are

such parallels.

Any plane which contains the
axis of rotation PP’ meets the 5
surface in a great circle called a Fic. 81
meridian.

Any meridian cuts the equator in two diametrically opposite
points. For the ““ prime meridian”’ (meridian of Greenwich,
PGQ) these are the points on the equator of 0° longitude and
180° longitude, Q and Q’, respectively.

If A is a station on the carth’s surface on meridian PAE,
arc EA = latitude of A and angle QPA = longitude of A.

Latitude is counted positive when point A is north of the
cquator and counted negative when point A is south of the
equator.

Arc PA is the north polar distance of A and is counted from"
0° to 180°. It is the complement of the latitude, and is greater
than 90° when the latitude is negative.

If A’ is a second station, E’A’ = latitude of 4’, angle QPA’
= longitude of A’, the angle A’PA = the difference of longi-
tude, DLO, of A and 4’.
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If a plane be passed through the earth’s center O and points
A and A’, the plane will cut the earth’s surface in the great
circle AA’".

Any other plane contdining points A4’ will cut the earth’s
surface in a “ small ”’ circle.

The shortest distance between A and A’ is the distance meas-
ured along the great circle joining the points.

The spherical triangle APA’, whose vertices are two stations
on the carth’s surface and the north pole, is much used in the
applications of spherical trigonometry. If the latitudes and
longitudes of A and A’ are given, we know also their polar dis-
tances; that is, the sides AP and A’P of the triangle. The
difference of longitudes is the angle APA’ included between
these sides.

The determination of the remaining parts of triangle APA’,
when two sides and the included angle are given, constitutes a
basic problem of spherical trigonometry. If an airplane is to
fly from A to A’ by the shortest route, it would have to start
from point A at an angle PAA’ with the true north.

114, Spherical right triangles.

Let O be the center of a sphere and ABC a triangle on its
surface, with the angle at C equal to 90°.

It should be noted that a spherical triangle may have two,
or even three, right angles. When there is more than one right
angle the side opposite each right angle is a quadrant.

We shall use small letters a, b, ¢ to indicate the sides opposite
the vertices A, B, C, respectively.

The angles of the triangle, at vertices A, B, C, we shall in-
dicate by the Greek letters «, 8, v, respectively. Thereforey =
90°.

Figure 82 indicates such a triangle, side AC being an arc
of a great circle which we might think of as the equator and
side CB then being an arc of a meridian. The right angle is at
C and AB is the hypotenuse.

Such a triangle is again represented in Fig. 83. In this figure
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pass a plane perpendicular to OA at A’ and let this plane meet
OB in B’ and OC in ¢". The plane angle B’A’C’ measures angle
BAC = a of the spherical triangle. §112(d).

——t———————-"0

(e}
(o]

Fia. 82 Fra. 83

The following triangles are plane right triangles:

A OA'B’; rt. angle at A’; A OA'C’; rt. angle at 47;
A A'C'B’; rt. angle at C'; A OC'B’; rt. angle at C'.
Then from plane trigonometry,

C'B’

. o praen OB OB”  sina

(a) sin a = sin B’A'C ~ T ~1F ~ sne
OB’
A'C’

(b) cos a = cos B’A'C =T 18 " tane
04’
BIC/
I7ald aYal

(c) tan a = tan B’A'C’ = B'C = 0C’ _tana

A'C" T AC" " sin b
oc”

Dividing (a) by (b) and comparing with (c¢) we have
(d) €Os ¢ = €OS a cos b.

Interchanging ¢ with b and « with 8 in (a), (b), (c) gives
three similar formulas, making seven relations.

These may be combined to give three additional formulas, mak-
ing ten in all. They are stated below, in forms cleared of fractions.
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(1) sin @ =sin ¢ sin a, (6) sin b = sin ¢ sin B,
(2) tan b = tanc cos «, (7) tan a = tan c cos B,
(38) tana = sin b tan a, (8) tan b = sin a tan B,
(4) cos ¢ = cos acos b, (9) cos ¢ = cot acot B,
(5) cos a = cos asin B, (10) cos B = cos bsin a.

Here (1), (2), (3), (4) are (a), (b), (c), (d) cleared of fractions;
from (1), (2), (3) we obtain (6), (7), (8) by interchange of letters.
To obtain formula (5) solve (3) for cos «, obtaining

coS a = sin « cot a-sin b

= sin « cot a-sin ¢ sin B from (6)
= sin a cot a sin B from (1)
= cos a sin B.

Formula (10) results from (5) by interchange of letters.
To obtain (9), solve (3) for cos a, solve (8) for cos b, and sub-
stitute these in (4).

115. Napier's rules of circular parts.

Let co-z denote the complement of any part z of the triangle.
Take the complements of ¢, «, 8, and arrange the five parts,
a, b, co-a, co-c, co-B, called circular parts, in the order in which
they occur in the triangle, as in the adjacent figures. Then if

B

b

Fia. 84 Fia. 85

any one of the five be taken as the middle part, of the other four
parts two will be adjacent and the other two opposite to this
part. Thus, if co-c be taken as the middle part, co-8 and co-a
are adjacent, a and b opposite.

If ¢ exceeds 90° co-c will be negative; similarly for « and 8.
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Napier’s Rules:

Product of tangents of adjacent parts,
Sine of Middle Part = or

Product of cosines of opposite parts.

Ex'ample.
With co-c as middle part Napier’s rules give

sin (co-¢) = tan (co-a) tan (co-g) or cosc = cot « cot 8;
sin (co-¢) = cos a cos b or cosc = cos a cos b.

These are formulas (4) and (9).

Exercise. Taking cach part in turn as the middle part write out a
complete list of formulas relating to the spherical right triangle.

116. Solution of right spherical triangles.

When two parts of a right triangle are given, in addition to
the right angle, we can always apply Napier’s rules to write
down three equations each of which contains the two given
parts and one of the unknown parts. These equations then
determine the three unknown parts.

Ambiguous Case. When an unknown part is determined by
the value of its sine, two supplementary values are obtained,
and there may be two solutions.
This happens when the given parts
are an angle and its opposite side, «
and a or 8 and b.

In this case the two triangles deter-
mined by the two solutions together
form a lune, as AA’ in Fig. 86, where
the given parts are assumed to be
angle o with vertex at A and its
opposite side a.

When an unknown part is deter-
mined by its cosine or tangent there is no ambiguity. If the
function is positive, the part lies in the first quadrant; if nega-
tive, in the second quadrant.

Fia. 86
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In the ambiguous case care must be taken to select the three
unknown parts properly from the three pairs of answers. As a
guide to this selection the following rules will be useful.

1. The sum of two sides must be greater than the third side.

2. If two sides are unequal, the opposite angles are unequal,
and the greater angle lies opposite the greater side.

3. Half the sum of two sides is in the same quadrant as half
the sum of their opposite angles.

4. Sides a and b are in the same quadrant if side ¢ is in quad-
rant I; they are in diffcrent quadrants if side ¢ is in quadrant
11.

5. A side and its opposite angle are in the same quadrant.

Rules 4 and 5 arc casily obtained by inspection of the ten
formulas. Rule 4 follows from formulas (2) and (7) and rule
5 from (3) and (8). The first three rules apply also to oblique
spherical triangles.

117. Examples.

We shall consider several examples, of which the second illus-
trates the ambiguous case.

In writing logarithms having characteristic 9-10 the -10 is
omitted to save space.

For a check use Napier’s rules to write an equation containing
the three unknown parts.

Example 1.
Given a = 35°42’; 8 = 60°25’. Find b, c, a.
The diagram of circular parts is shown in the
figure. Taking (1), (2), (3) in turn as middle part
we have
(1) sin 35° 42’ = tan 29° 35’ tan b;
(2) sin 29° 35’ = tan 35° 42’ tan (co-c);
(3) sin (co-a) = cos 29° 35’ cos 35° 42, F1c. 87
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Hence
sin 35°42’ sin 29°35'
~ tan 29° 35’ ~ tan 35° 42"
cos a = cos 29° 35’ cos 35° 42'.
Check. The computed parts must satisfy the relation
sin (co-a) = tan b tan (co-), or cos a = tanb cot c.

tan b cot ¢

Computations.

log log log
sin 35° 42’ = 9.7660 sin 29° 35’ = 9.6934 cos 29° 35’ = 9.9394
tan 29° 35’ = 9.7541 tan 35° 42’ = 9.8564 cos 35° 42’ = 9.9096

tan b = 0.0119 cot ¢ = 9.8370 cos a = 9.8490
b=45°17" ¢ = 55° 30 a=45°4
Check. log cos « = log tan b+ log cot c.

9.8490 = 0.0119 + 9.8370.
Example 2.
Given « = 48°25,a = 32°13’. Find b, ¢, 8.

Using (1), (2), (3) in turn as middle part,
Napier’s rules give

(@) )
(1) sin b = tan 41° 35’ tan 32° 13';
(2) sin 41° 35’ = cos (co-B) cos 32° 13';
(3) sin 32° 13’ = cos (co-c) cos 41° 35'. (1)
Fic. 88

Solving for the unknown parts:
sin b = tan 41° 35’ tan 32° 13';
ng = sin 41°35"
cos 32° 13/
sin 32° 13/

S = oS 41° 35"
Check. sin b = cos (co~) cos (co-g) = sin ¢ sin .
Computations.
log log log

tan 41° 35’ = 9.9481 sin 41° 35 = 9.8220  sin 32° 13’ = 9.7268
tan 32° 13’ = 9.7994 cos 32° 13’ = 9.9274 cos 41° 35’ = 9.8739

log sin b = 9.7475 log sin g = 9.8946 log sin ¢ = 9.8529
b = 33° 59’ g = 51° 41’ ¢ = 45°27
b = 146° 1" g = 128° 19 ¢’ = 134° 33’
Check. log sin b = log sin ¢ + log sin 8.

9.7475 = 9.8529 + 9.8946.
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If the logarithm of the sine of one of the unknown parts is 0, that
part is 90°, and there is only one solution. If the logarithm is positive
there is no solution.

Example 3.
Given a = 50° ¢ = 120°. Find side bd.
Here co-c = — 30° a negative angle. To obtain side b Napier’s

Rules give, with co-c as middle part,
sin (— 30°) = cos b cos 50°, or, cosb = sin (— 30°) sec 50°.
Since sin (— 30°) is a negative number cos b is negative and b is in
quadrant II. We obtain
cosb = — 31X 1.5557 = — 0.7778. b = 180° — 38° 56’ = 141° 4.

Example 4.
Solution of an oblique spherical triangle.
In triangle A BC let there be given two sides and their included angle,

namely
b=63°22", ¢c=59°17’, a = 81° 39".

The unknown parts, side a and angles g and v are to be calculated.

[+

F1a. 89a

Divide the oblique triangle into two right triangles by the perpendic-
ular CD drawn from vertex C on side AB, as in Fig. 89a. Let p =
arc CD, m = arc AD, ¢ — m = arc DB. 1In right triangle CDA side
b and angle « are known so that we can calculate p, m, and angle DCA.
Then in right triangle CDB we know p and ¢ — m, and can calculate
side a, angle g and angle DCB. Finally the sum of angle DCA and angle
DCB equals angle ~.

The student should note the close analogy between the method
used here and that used in the corresponding problem for the
plane oblique triangles. See Example 1 at the end of §43.
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EXERCISE

(a) Show that in A CDA Napier’s Rules give,
with co-b as middle part; cos b = cot « cot DCA,

or, cot DCA ~= cos b tan «:
with co-a as middle part; cos a = cot b tan m,
or, tan m = tan b cos a:
with p as middle part;  sinp = sinb sin a.

(b) Show that in A CDB Napicr’s Rules give,
with p as middle part; sin p = tan (¢ — m) cot DCB, or, cot DCB=
cot (¢ — m) sin p:
with ¢ — m as middle part; sin (¢ —m) = cot 8 tan p, or, cot 8 =
sin (¢ — m) cot p:
with co-a as middle part; cos a = cos (¢ — m) cos p.
(¢) Use the numerical values given above to calculate angle DCA, m
and p by the formulas under (a), then angle DCB, 8, and a by the formulas

under (b), and finally angley. Use 4-place tables.
Ans. a =70°7, B =70°9,vy = 64°49'.

118. Quadrantal triangles.
A quadrantal triangle is one having a side equal to a quadrant
or 90°. Its polar triangle will be a right triangle, which may be

solved by Napier’'s Rules. The parts of the given quadrantal
triangle then become known by (e) of §112.

119. EXERCISES 49
Solve the following triangles, ¥ being the right angle:
1. a =137°59, 6. a = 134° 30, 9. b =122°3%,
b = 58°40". c =122°8". B = 134° 30".
2. a =137°50/, 6. ¢ =137° 20/, 10. b =60°11.4/,
c = 64°40". a = 149° 40'. ¢ =83°308".
3. a =547, 7. ¢ =73°3%, 11, ¢ =129°14.7',
B =85°52". B =101°13". a =43°15.7".
4. a = 41°, 8 a=74°7, 12. a = 58° 3.5,
B = 37°. a="75°6" B = 36°35.6".
Solve the following quadrantal triangles, side ¢ being 90°:
13. a = 116° 45/, 16. b =35°6/, 19. 8 =24°12.6’,
b =44°26". B =33°28". v = 152° 50.6'.
14. b = 36° 10/, 17. a = 108° 23, 20. @ = 58°52.1/,
vy = 65°28". v =88°18'. v = 146° 59.4’.
16. a =18°8/, 18. a =80° 10/, 21. b =127°24.3,

B = 48°52'. a=638°0" B8 =135° 56.2".
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120. Oblique spherical triangles. Two fundamental formulas.

I. Law of sines.

Let triangle ABC be a spherical oblique triangle. To obtain
relations between the parts of such a triangle we draw an arc
through a vertex perpendicular to the opposite side and use the
resulting right triangles.

The foot of the perpendicular from C on AB, point D, may
fall on side ¢ (Fig. 89a) or on side ¢ produced (Fig. 89b).

C ctm
Fig. 8% F16. 89b

By use of Napier’s rules:

A ADC, sinp =sinbsin @; sinp =sinbsin (r — a);
/A BDC, sinp = sin asin 8; sin p = sin a sin 8.
But sin (7 — @) = sin @. Therefore the equations from Fig.
89b reduce to those for Fig. 89a.
Equating the values of sin p, we have
sin b sin « = sin a sin B.
This may be written
sina _sinb
sine sinp
By drawing the perpendicular through vertex B a third ratio
is introduced and we have
sina sinb sinc
@ sina  sinB  siny
a Ssinf sinvy

These relations are known as the law of sines. In verbal form,
the sines of the sides are proportional to the sines of their opposite
angles.
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II. Law of cosines for sides.
In Fig. 89a or 89b, let AD = m. Then BD = ¢ — m, Fig. 89a,
and BD = ¢ + m, Fig. 89b. We first consider Fig. 89a.
In right A BDC: cos @ = cos (c — m) cos p
= CO0S ¢ COS M €oS P + sin ¢ sin m cos p.
We substitute here the values of cos m cos p and sin m cos p
from A ADC.
In A ADC: cos b = cos m cos p.
Also, sin m =sin b sin ACD and cos @ = cos p sin ACD.
S sin m cos p = sin b cos a.
Substituting these in the expression for cos a we have
2) cos a = cos b cos ¢ + sin b sin ¢ cos a.
In Fig. 89b, BD = c + m. Also angle DAC =7 — a.
In right A BDC: cos a = cos (¢ + m) cos p
= COS € COsS M cos P — sin ¢ sin Mm cos p.

In right A ADC: cos m cos p = cos b;

) . in b.Co8(r ~ )
S m COS p = sin ACD sin b sin ACD

. . — COS o
sin ACD sin bm

= — sin b cos a.

Substituting in the expression for cos a we obtain formula (2)
exactly as before.

By drawing perpendiculars on the other two sides we would
obtain corresponding formulas for those sides. Instead of
writing these formulas out separately we include all three in a
verbal statement of the law of cosines for sides.

The cosine of any side equals the product of the cosines of the
other two sides plus the product of their sines by the cosine of their
included angle.

From the fundamental formulas (1) and (2) we shall derive a
group of other formulas adapted to the solution of spherical
triangles.
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121. Principle of duality.

By means of (e) of §112 any formula relating to the spherical
triangle can be made to yield a second formula. Thus, let
A A’B’C’ be polar to A ABC. Then from (1) and (2), applied
to A A’B'C’, we have

sina’  sina

sin b’ sin g’
But a =180° — o, o =180° — q,

b =180° -8, B =180° — b,
¢ = 180° — 4, v = 180° —¢.
Substituting and reducing, we have

cos @’ = cos b’ cos ¢’ + sin b’ sin ¢’ cos .

I

sina _sina
sinf  sind
3) cos a = — cos B cosy + sin 3 sin+y cos a.

The first of these is simply the law of sines; the second is a
new formula. It is called the law of cosines for angles.

122. Formulas for the half-angles.
From the half-angle formulas of group C, §73, we have

.1 1 —-cosa
SIn 30 = + —2“

Since 3« is less than 90°, & being less than 180°, we take the 4+
sign.
We work out a value for 1 — cos a to substitute under the
radical.
Solving (2) for cos a, we have
cos @ — cos b cos ¢
sin b sin ¢
cos a — cos b cos ¢
sin b sin ¢
sin b sin ¢ + cos b cos ¢ — cos a
sin b sin ¢
cos (b —¢) —cosa
sin b sin ¢
—2sin3(b—-c+a)sini(b-c—~a)

= sin b sin ¢ §75

CoS a =

1—-cosa=1-

§67
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1-cosa sinzla+b—c)sini(@a-b+c)
2 B sin b sin ¢
4) Let 2s=a+b+c.
Then $(@+b-¢)=s-¢; 3@-b+c)=s-0. §82
Therefore

) sin Yo = Jsm (s - b) sin (s—¢)
sin b sinc

Similarly, starting with cos 3o = V1(1 + cos «), we get

(6) cos Lo = sin s sin (s — a)
2 \ Sinbsinc

By dividing,

1. _ ,[sin(s — b)sin(s — c)_
@ tan ja = J sin s sin (s — a)

§23

Given the three sides, one of these formulas, preferably the
last, will determine the angles. When all three angles are de-
sired, let

(8) tanr - ‘/sin (s—a) sins(;l; b) sin (s — c);
then

) tan la = ﬁj—a)’

(10)  tan 38 = Eﬁ%:r’?)’

(11)  tan 3y = mt%:__'c‘)

123. Formulas for the half sides.
Proceeding as above with (3) of §121, or by applying the
principle of duality to formulas (5) to (11), we have, on putting

(12) 2S =a+ B+

and

13 _ — cos S s
(13)  tan R ‘/cos (S —a) cos (S —B) cos (S —7)

(14)  sin iq = J— cos S cos (S — &)
2 sin 8 siny

(15)  cos ta = {cos (S = B) cos (S — 7),
2 sin 8 siny
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~cos Scos (S — a
(16) fan 4a = \/ cos (S — B) co(s S -)7)’
a7 tan 3a = tan R cos (S - a),
(18) tan 1b = tan R cos (S - B),
(19) tan 3c = tan R cos (S — ).

124. Napier's analogies.
Dividing tan ia by tan 38 we obtain
tan fa sin (s — b)

tan 38 sin (s — a)

By composition and division, or by following the steps in the
first part of §81, we obtain
() tan 3o + tan 38 _ sin (s — b) + sin (s — )

tan 1o — tan 38 sin (s — b) — sin (s — a)

To reduce the fraction on the left we write, for convenience,
1 1
T =za, Y =36
Then

tanz +tany tanz +tany cosrcosy
tanz —tany tanz —tany cos x cos y

_sinrcosy4coszsiny sin (r+y)
T sinzcosy —cosxsiny  sin (& — y)‘
tan 3o + tan 38  sin i(a + B)
tan i — tan 28 sin i(a — B)

To reduce the fraction on the right side of equation (a) we
write u =s —~band v = s — a. Then, §67,
sinu +sinv 2 sin 3(u 4+ v) cos L(u — v)
Sinu —sinv 2 cos (u+ v) sin &(u — v)
tan 3(u + v)
T tan i(u — v)

But
Uu+v=8s—-b+s—a=2s-a->b=c;
u—-v=s—-b-s+a=a-b
sin (s —b) +sin(s —a)  tan jc
sin (s —b) —sin (s —a) tan 3(a - b)

Then equation (a) reduces to
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(20) sr:n %(a +8) __ tan e
sinj(a —B) tani(a-b)

Similar formulas may be obtained involving the pairs of
angles «, ¥ and B, y. All may be expressed by the same verbal
statement.

In applications to the solution of triangles, (20) is written in
the form

(20" tani(a - b) = 22 ;Ea T [‘g tan ic.

Multiplying tan 3« by tan 38 and reducing,

tan o tan 38 sin (s — ¢)
1 " sins

By composition and division, and reduction as above,

(1) cosi(a+B) __ tanic
cos 3(a — B) ~ tan}(a + b)
or
a —
2r) tani(a+ by = 252 =P onse

cos 3(a + B)

These formulas determine the other two sides when two angles
and their included side are given.

Proceeding as above with tan a and tan 3b, or by the prin-
ciple of duality applied to formulas (20) and (21), we obtain

(22) sin}(a + b) _ cot %“Y ,
sini(a—-b) tan i(a - B)

or

(22" tan 3(a - B) _::ZEEZH;;C ot 3 v;

and
cosia+b)  cotdly

(23) cosi(a—-b) tani(a+p)

or

, _cosi(a-1b)
(23" tan }(a + B) = cosi(@t b) cot 3v.

These formulas determine the other two angles when two sides
and their included angle are given.
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125. Delambre's or Gauss's analogies.
These are formulas for the sine and cosine of the half-sum
and the half-difference of two angles.

(24) sin b+ 6) = S22 o1
(25) sin j(a - B) = ﬂl—,(la—%c——) cos Ly;
(26) cos j(a + ) = %‘%—b) sin}y;
(27) cos }(a - ) = TEOE O gin 4,

We shall show how (27) is derived.
cos 3(a — B) = cos 3 cos 3B + sin 3« sin 8.
From the half-angle formulas we obtain
cos sacos 38 sins. sin Jasin 38 sin (s —¢)
sin 3y T sine’ sin 3y T Tsine

Adding these we have
cos 3(a — B) _sin s +sin (s — ¢)
sin ty sin ¢
2 sin 3(2s — ¢) cos 3¢
2 sin 3¢ cos 3¢
sm ia + b).
sin ¢

Multiplying both sides by sin 3y gives (27).

126. Area of a spherical triangle.
This may be calculated by (f) of (82), namely,
E (degrees)
K =70
To obtain E, we may first calculate the angles. E may also
be obtained by one of the following formulas which we add
without proofs.

tan 3E =

X 4rR?, or, K = K (radians) X R2

tan 1a tan 3b siny |
1 + tan ia tan 3b cosvy’

tan iE = tan 5 $ tan == % tan S ; b tan & ; ¢
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127. Solution of spherical oblique triangles.

Six cases arise, according to the nature of the three given
parts.

I. Given two sides and an opposite angle.

Denote the given parts by a, b, a. Calculate 8 by (1), then
v by (22) or (23), and ¢ by (20) or (21).

Check. sin b : sin ¢ = sin 8 : sinv,
which involves the computed parts.

Ambiguous Case. TFormula (1) will give two (supplementary)
values for 8. Two solutions are obtained when both values of

B lead to values of v. Otherwise one or hoth values of 8 must
be rejected.

Rule. Retain values of B which make a — 8 and a — b of like
sign.

Otherwise (20) and (22) take the impossible form + = —.

II. Given two angles and an opposite side.

Denote the given parts by «, 8, a. Calculate b by (1), then
proceed as in 1.

Ambiguous Case. Formula (1) gives two values of b.  Retain
the value or values which make o — 3 and a — b of like sign.

L. Given the three sides.

Caleulate the angles by (9), (10), (11).
Check. sinea :sina =sin B :sinb = siny :sine.

IV. Given the three angles.

Calculate the sides by (17), (18), (19).
Check. As in IIL

V. Given two sides and their included angle.

Denote the given parts by a, b, v. Calculate 3(a + B8) by
(23"), 3(a — B) by (22'); then « and B by addition and sub-
traction; obtain ¢ in two ways by the law of sines. This fur-
nishes a check; or check by (20) or (21).
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VI. Given two angles and their included side.

Denote the given parts by «, 8, c. Calculate 3(a + b) from
(21'), 3(a = b) from (20"); hence get a and b; obtain y in two
ways by the law of sines. This gives a check; or check by (22)
or (23). '

The quadrant of a side or angle, when in doubt, may often be
decided readily by the use of Rules 1, 2, or 3 of §116. These
three rules apply to oblique triangles as well as to right tri-
angles.

128. Alternative method under Case V.

When two sides and their included angle are given, each of
the unknown parts can be calculated independently by compact
formulas well adapted to logarithmic computation. These
formulas will now be derived. Applications will be given in the
next chapter. See also the note in §134.

[o]
F1a. 89a

Case V.
Given b, ¢, a. To determine a, 8, 7.

We return to Fig. 89a, which is reproduced here for conven-
ience of reference. The case of Fig. 89b will be discussed later.

Apply Napier’s Rules to triangle CDA:

1) cos b = cos m cos p, or cos p = cos b sec m.
2) sin m = tan p cot «, or cot p = cot a csc m.
3) cos @ = tan m cot b, or tan m = tan b cos a.

Apply Napier’s Rules to triangle CDB:
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4) cos a = cos p cos (c — m).
5) sin (c —m) = tan pcot B, or cot B = cot p sin (¢ — m).

Substitute cos p and cot p from 1) and 2) in 4) and 5):

I

6) cos a = cos b sec m cos (¢ — m).
7) cot B = cot a csc m sin (¢ — m).

Equation 3) gives m, 6) gives a, 7) gives 8.

To obtain ¥ = angle BCA, we may suppose a perpendicular
BD’ to be drawn from B to side AC, and let AD’ = n. Then we
obtain, in place of 3), 6), 7), the following equations:

3’) tan n = tan ¢ cos a.
6’) cos a = cos ¢ sec n cos (b — n).
7') cot v = cot a esc nsin (b — n).
As to the case of Fig. 89b, if we regard arc m as a positive
length, then arc DB = ¢ + m and this quantity would appear in

I

c+m
Fia. 8%b

6) and 7). But if we regard m as a signed quantity we see from
3) that m will change sign when angle a becomes obtuse and <o
we must write arc DB = ¢ — m, not ¢ + m. Hence we obtain the
same formulas from either figure.

For convenience of reference we group the formulas of this
section.

Alternative formulas for Case V. Given b, c, a.
(28) tan m = tan b cos a; tan n = tan c cos a.
(29) cosa = cos b sec mcos (c — m) = cos ¢ sec ncos (b —n).
(30) cot B = cot @ csc m sin (¢ — m).
(31) coty = cot a csc n sin (b — n).



184 SPHERICAL TRIGONOMETRY

129. Haversine Formulas.

The haversine function, defined in §25, may be conveniently
employed when three sides of a triangle are given and only one
of the angles is required, or when two sides and their included
angle are given and the third side is required. Extensive tables
of this function have been calculated. A brief table is included
in Appendix B.

(a) Given the three sides, to find one of the angles.
The square of the half-angle formula (20) gives

sin (s — b) sin (s — c)_

el
s 3 sin b sin ¢
But sin? fa = 1—%(} = hav a.
Therefore
(32) hav o - sin (s — b) sin (s — o).

sin b sin ¢

(b) The same problem may be solved by starting with the law
of cosines and introducing the haversine function.

From the law of cosines:
cos a — cos b cos ¢
sin b sin ¢

I

COS o

cosa — cos b cos ¢
sin b sin ¢

l1—-cosa=1-

I

sin b sin ¢ + cos b cos ¢ — cos a
sin b sin ¢

cos (b —¢) —cosa
sin b sin ¢

But
1 —cosa =2hav «;
cos (b —c)=1-2hav (b —c);
cosa =1 —2hava.
Therefore
(33) hav o = hava — hav (b - ¢)

sinb sinc
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(¢) A frequently occurring problem in the applications is the
calculation of the third side of a triangle from two sides and
their included angle. It is the problem involved in finding
the distance between two stations whose latitudes and longi-
tudes are known.

The haversine formula for this problem is obtained directly
from (33) by solving for hav a.

(34) hava = hav (b - ¢) + sin b sin ¢ hav a.

Fxamples of the use of these formulas will be found in the
following chapter.

130. Suggested forms for computations.
Case I. Given two sides and an opposite angle.

Example.
Given a = 100° 37/, b = 62° 25, a = 120° 48'.
Formulas. sin g = in—b sin «,
sin @
yy = Sindlat by o
cot iy Gnia—b) tan i(a — B),
o = SindlatB)
tan ic Gn 1(a— ) tan i(a — b).
\ sinb _ sin 8
Check. sine = siney’
Computations.
log sin b = 9.9476 a = 100° 37’ a = 120° 48’
log sin a = 9.9340 b= 62° ?5’ = 50° “,1.61
colog sin a = 0.0075 a+ b= 162° 62’ a+ g =170° 04
log sin g = 9.8891 a—b= 3812 a—pg= 70° 2

B = 50° 46.5’ Ha+b) = 81°3l" (a4 B) = 85°47
or 129°13.5' Ha=0b)= 19° ¢ 3 a—8)= 35° V

Rejeet the larger value of g by the rule in 1.

log tan 3(a — B) = 9.8455 log tan i(a — b) = 9.5395
log sin $(a+ b) = 9.9952 log sin 3(a+ 8) = 9.9989
colog sin }(a — b) = 0.4852 colog sin i(a — B) = 0.2412
log cot 3 v = 0.3259 log tan ic = 9.7796

1y = 64°43.5 ic=31°3'

vy = 129° 27 c=62°6'
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Check. log sin b = 9.9476 log sin 8 = 9.8891
sin ¢ = 9.9463 siny = 9.8877
0.0013 0.0014

NotE. In the solutions of triangles, a complete form should be prepared in
advance, so that only numerical values need be inserted when the tables are
opened.

Case Il. Given a, 3,a. To find b, c, v.
in 8

. si .
sin b = ——sin a.
na

-

Formulas.

The rest of the calculations are as in Case I,

Case III. Given the three sides.

-Example.

Given a = 119° 32/, b = 44° 52/, ¢ = 144° 50".

To find «, 8, v.

Formulas. !
s=a+b+c; tanr:\/sm(s—a)sm(.s—b)sm(s—c);

2 sin 8
a  tanr B tanr y_ tanr |
tan-é " sin (s —a)’ tan 2 sin (s — b)’ tan 2 sin (8 —¢)

sine sind sinc
Check. T = e =

sine sing siny
Computations.
a = 119° 32’ log sin (s — a) = 9.7595 }a = 38° 51.5’
b= 44°52 log sin (s — b) = 9.9737,
¢ = 144° 50’ log sin (s — ¢) = 9.2302 18 = 26° 12
2s = 309° 14’ colog s = 0.3679
21(9.3313 3y = 69° 51.3’
s = 154° 37’ log tan r = 9.6657}
s—a= 35° &
s —b=109° 45 log tan }a = 9.9062 a= T1°43
s—c=_9°47 18 = 9.6920 B = b52°24
Check 3y = 0.4355 v = 139° 43’
sum. 153° 97’
log log log
Check. sin a = 9.9396 sin b = 9.8485 sin ¢ = 9.7604
sin « = 9.9900 sin g = 9.8989 sin y = 9.8108
difference: 9.9496 9.9496 9.9496
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Case 1IV. Given a, 8,vy. To find a, b, c.
Method (a). Solve the polar triangle as in Case III.

Method (b). Use formulas (12), (13), (17), (18), (19).
Check as in Case III.

Case V. Given two sides and their included angle.
Example.
Given a = 103° 7.0/, b = 70° 40.0’, v = 127° 39.4",

To find «, 8, c.
Formulas.
, _cos §(a —b) .
(23) tan é(a-*'ﬁ) - cos }(a-{-b)COt %7;
0N ar L — =sin%(a—b) -
(22 tan Y a — B) sin 3axb) cot }v; Check. (20)
. siney . sin §(a+ ) _  tan ic
M SIC= g e sin (e — B) tan i(a — b)
a = 103° 7.0’ a4+ b) = 86° 53.5 Ha+ B) = 83°26.7
b 70400
a+h = 173°47.0 Ya—b)=16°135  Ha—p)= 7°49.8
a—-b= 32°27.00 a = 91°16.5’
3}y = 63° 49.7 B = 75°36.9".
log cos i(a — b) = 9.98235 log sin v = 9.89855
colog cos 3(a + b) = 1.26581 log sin a = 9.98852
log tan 3y = 9.69148 colog sin o = 0.00011
log tan }(a 4+ g8) = 0.93964 log sin ¢ = 9.88718
log sin }(a — b) = 9.44624 = 180° — 50° 27.8' = 129° 32.2.
colog =in }(a+ b) = 0.00064
log cot v = 9.69148 dc = 64° 46.1".
log tan }(a — B) = 9.13836
Check. log sin }(a+ B) = 9.99715 log tan 3c = 0.32676
log sin 4(a — 8) = 9.13429 log tan 3(a — b) = 9.46390
difference: 0.86286 0.86286

Note that the quadrant of side ¢ is determined by the fact that side ¢
must be the longest side of the triangle.

Case VI. Given a, 8, c.
Method (a). Solve the polar triangle by the method of Case V.
Method (b). Use (20), (21'), (1); check by (22).
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131. EXERCISES 50

Use 5-place tables where angles are given to fractions of minutes or to
seconds. Reduce seconds to tenths of minutes.

1. 11. 21. 31.
a="T0 5, a=123°438, a=137°30, ¢ =120°18'33";
b = 63° 22, B =127°418, a=125° 0O, a= 27°22' 34";
¢ = 59°17". v = 83°39.3. vy = 41°50. B = 91°26'44".

2. 12. 22. 32.
a= 82°40, b = 47° 42, a = 35°37.3, a=153°17 6"
b= 84°20, a=91°47.7, «=29° 3, B = 78°43 32"
¢ = 114° 30" v = 55°52.7". B = 45°44.1". v = 78°15 46",

3. 13. 23. 33.

a = 150° 20", a= 55° 7, a=135°378, a=112°10'40";
b = 137° 20", B = 148°471/, «=120°14.7, B = 67°49 30"
c = 20° 6. v = 24°25". B =110°47.3. v = 43° I’ 0"

4. 14. 24, 34.
a=115°134", a= 72°52, a=126°173", a = S0°3420";
b =127°17.8, § =123°40, «=117°446", B =132°26'10";
c = H7°48.9. 4 =101°45. v o= 26°504. 4 = 52°28' 15"

5. 16. 26. 35.

a = 54°40, a = 108° 45, a = 69°10.0'; b = 159 20.5%;
¢ = 131° 30/, B = 140° 507, b =31°35.2"; ¢ = 158° 14.3%;
8 = 96°47. n = 139° 25", v = 43°20.6". v = 112°14.2".

6. 16. 26. 36.
a= 51°15, a= 80°19.2, b =125°59.3; a =165°2520";
b = 149° 25/, B =115°36.8", ¢ =170°10.9; o =112°10'40";
B = 139°51". v = 79°10.5". a=112°182. g = 67°49' 30"

7. 17. 27. 37.

b =112° 0.3, b =90°36, a= 18°487; a= 23°57 11"
c = 95°13.3, ¢ =39°40, b =159°20.5"; ¢ = 120° 18’ 33";
«= 83°355. @8 =50°52. c =158°14.3". 4 = 102° 546"

8. 18. 28. 38.
a= 63°51.5, a=114°27, a= 78°152; a= 58°12.7";

b =144°134’, b = 84°22, b =101°20.3"; 4 = 169°18.2/;
v =128°58.8. g = 80°19. v =111° 37, ¢ =170°10.9".

9. 19. 29. 39.

a = 132° 39, a = 118°22, a= 70° 0'37"; b =88°1219";
B = 52°38, b= 40° 56, ¢ = 63°47'55"; ¢ =86°15 15";
v = 41°40". B = 20°426. B =150°13"15". @ =75°43'32".

10. 20. 30. 40.
¢ = 51°44/, a=143°39.7, ¢ =125°18'20"; a = 80°34’' 20";
= 91°36, b =133°29.8, a= 96° 212" «=49°32'25";
B =123°12". «=137°447". B =102°16'36". 5 =52°28'15".
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x" APPLICATIONS

132. Terrestrial triangles.

We shall consider the earth as a sphere with a radius of 3960
statute miles, or land miles. Longitudes are to be reckoned
from Greenwich as prime meridian, 180° or 12 hours to the west
or cast. The direction will be indicated by a letter, W or E;
when signs are used, + means west longitude.

We shall denote longitude by lambda, . Then the longitude
of a given place is measured by the are of the equator contained
between the meridian of Greenwich and the meridian of the
place, and it is also measured by the angle at the pole between
those two meridians.

We shall denote latitude by the letter phi, ¢ or by L. Lati-
tude is counted positive to the north, and negative to the
south, of the equator.

We shall denote distance from the north pole by p. This
polar distance will be the complement of the latitude,

p=90° - =090°— L.

A triangle whose vertices arc the north pole (or the south
pole) and two points on the earth’s surface will be called a
terrestrial triangle.

189
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In Fig. 81, let P be the earth’s north pole, G Greenwich, A
and A’ two stations, station A’ lying to the west of station A.
Then triangle APA’ is a terrestrial triangle. Two sides of this
triangle are the polar distances of the two stations, or the com-
plements of their latitudes, and the third side is the great circle
arc between the two stations. The angle at the pole is the
difference of longitude of the two stations. The other two angles
are the angles which the great circle arc AA’ makes with the
meridian at the respective stations.

P .

» :

g
Fia. 81

To sail a ship, or fly an airplane, from A to A’ the navigator
would wish to know the length of the journey if the great circle
arc AA’ were followed, and the angles PAA’ and PA’A, which
would be the courses of departure from A and of arrival at A’.
The problem comes under Case V of §127, or the alternative
method of §128, or the haversine method of §129.

The nautical mile is defined as the length of an arc of 1’ of a
great circle on the earth’s surface. Accordingly, the circum-
ference of the earth would be 360 x 60 = 21600 nautical miles.
The circumference in statute or geographic miles is 24890
miles. Roughly speaking, the measure of a distance in geo-
graphic miles is about one-seventh greater than the measure of
the same distance in nautical miles.

From the definition of the nautical mile, it follows that the
number of minutes in an arc of a great circle is also the number
of nautical miles in that arc.



PROBLEMS INVOLVING THE TERRESTRIAL TRIANGLE 191

133. Problems involving the terrestrial triangle. Great circle sailing.

Problem 1.

What is the great circle distance from Seattle, (47° 40’ N, 122° 20’ W)
to Honolulu, (21°20’ N, 157° 50’ W)?

We shall use the method of §128 with A as the north pole, B
as the point in Seattle whose latitude and longitude are as given
above, C the corresponding point in Honolulu; we shall have
¢ = AB = 90° — 47° 40" = 42° 20';
b=AC =90° — 21° 20’ = 68° 40';

a = angle BAC = diff. of long. = 157° 50’ — 122° 20" = 35° 30.
With these values we caleulate m from (28) and then a from (29)
of §128.

Computations.
tan m = tan b cos «; cos a = cos b sec m cos (¢ — m)
log tan b = 0.4083 log cos b = 9.5609
log cos @ = 9.9107 colog cos m = 0.3639

log tan m = 0.3190 log cos (c — m) = 9.9671
log cos a = 9.8919
m = 64° 22’
c—-m=22° 2 a = 38° 46’.
a = 38 X 60 + 46 = 2326 nautical miles.
Check. Use the half-angle formula, squared,

o, sin (s - b) sin (s — ).
sty = sin b sin ¢
o ’
a= 38 46 logsin (s=b) = 9.0345 la= 17° 45
b= 68 40 logsin (s—c) = 9.7308
= 42 20 cologsinb = 0.0308 logsin 3a = 9.4841
25 = 148 106 cologsinc = 0.1717 2
18.9680 18.9682
s—74 53 sum 8
s—-b= 6 13
s—c=32 33

A check could also be made by calculating both m and n and
then using both forms of (29), §128.



192 APPLICATIONS

Haversine solution. From (34) of §129, we have
hava = hav (b — ¢) + sin b sin ¢ hav a(= hav (b — ¢) + Z).
a=35°30"  logsinb =9.9692 hav (b — ¢) = 0.0519

b =68°40" logsinc =9.8283 Z = 0.0583

¢ =42°20" log hav a = 8.9682 hav a = 0.1102

b—c =26°20 log Z = 8.7657 a = 38° 47
Problem 2.

With the data of Problem 1, calculate the course of the ship on leav-
ing Seattle and on arriving at Honolulu.

Note. Here the term ““ course” means the angle between the direction
in which the ship is headed and the meridian. The angle is measured from
the northern or southern part of the meridian to make the course an acute
angle. It corresponds to the surveyor’s use of the term * bearing 7’ (§56).
The navigator uses the term bearing as an angle measured from the direction
of the keel of his ship.

We have to calculate angles 8 and v. We use (28), (30), (31)
of §128.

tanm = tan b cos «;  cot B = cot « esc m sin (¢ — m).

tan n = tan c cos «; coty = cot a esc n sin (b — n).
o ’
a=23530 logtanb = 0.4083 log cot a = 0.1467

b =68 40 log cos o = 9.9107 colog sin m = 0.0450
¢ =42 20 log tan m = 0.3190 logsin (¢ —m) = 9.5742n
b—c =26 20 m = 64° 22’ log cot B = 9.7659n
c—m=—22°2" B8 =180° — 59° 45" = 120°15'.
Course: S 59° 45" W

log tan ¢ = 9.9595 log cot a = 0.1467

log cos a@ =9.9107 colog sin n = 0.2253

log tan n = 9.8702 logsin (b —n) =9.7258

n = 36° 32’ log cot ¥ = 0.0978

b—-n =32° 8§ v = 38° 38’
Course: S 38° 38" W.
Check., SR2 _8nB 100 sinb = 9.9692 log sin 8 = 9.9364
sine sy sin ¢ = 9.8283 siny = 9.7954
diff. 0.1409 0.1410
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Problem 3.

If the ship in Problem 1 follows the great circle track Seattle-
Honolulu, what should be her course when 1000 nautical miles out of
Seattle? What will be her latitude and longitude
at that point?

Known values are:

¢ = 42° 20/,
a = 1000' = 16° 40/,
B =120° 15". (Prob. 2.) Fia. 90

We calculate b, a, v, from which the required quantities can be
obtained.

To obtain b we use (34) of §129 with proper change of letters.
Then « and v are obtained by the law of sines.

hav b = hav (¢ — a) + sin a sin ¢ hav 8 (= hav (¢ — d) + Z);

in a sin ¢

sin si sin B; sin sin 8
SMMa = —58 y S = — .
sin b ’ Y= Sno

Check. Use (20") of §124, with change of letters and cleared of
fractions. tan 3(c — a) sin 3y 4+ a) = sin 3(y — a) tan 1b.

Computations.

o 7 log
=120 15 sin a =9.4576  hav (¢ — a) = 0.0493
¢ = 42 20 sin ¢ =9.8283 Z=0.1452
a = 16 40 havp =9.8761 hav b = 0.1945
c—-—a= 2540 log Z =9.1620 b = 52° 20
e —-a) = 12 50 1 =26° 10
log sin a = 9.4576 log sin ¢ = 9.8283 log Check.

log sin B = 9.9365 log sin B = 9.9365 tan i(c — a) = 9.3576

clsinb =0.1015 clsinb = 0.1015 sin 3y + a) =9.7334

log sin a = 9.4956 log siny = 9.8663 sum 9.0910
vy = 47° 18’

a=18° 14 sin iy — @) = 9.3996

tan 3b = 9.6914

Y +a=065°32 30y +a) =32°46 sum 9.0910
y—a=20° 4 iy -a =14°32
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Ans. At X, 1000 miles from Seattle on g.c. SH,
latitude = 90° — b = 37° 40/,
longitude = « + long. of S = 18° 14’ 4+ 122° 20’ = 140° 34/,
course = S 47° 18’ W.

EXERCISES 51

1. Calculate the latitude, longitude and course on g.c. Seattle-Honolulu
when the distance from Seattle is:

(a) 500 miles; (b) 1500 miles; (c¢) 2000 miles.

2. Calculate the latitude and course on g.c. Seattle-Honolulu, and the
distance out from Seattle at intervals of 10° in longitude from Seattle.

Suggestion. In triangle SPX, Fig. 90, we now have side SP, angle g8
as found in Problem 2, and angle SPX = 10° for the first interval. The
solution comes under Case VI of §127.

3. In what longitude does the great circle from Seattle to Honolulu eross
the 40th parallel of latitude? What is the great circle distance from
Seattle at this point?

4. An airplane pilot, flying from Seattle to Honolulu, finds that his posi-
tion is 30° N, 150° W. How far should he now fly, directly north or south,
to get on the great circle?

5.7 Use the methods of §127, §128, and §129, to calculate the great circle
distance between San Francisco (37°47' N, 122° 26’ W) and Melbourne
(37°50' S, 145° 0’ E).

6. Determine the positions of the “vertices” of the great circle
through San Francisco and Melbourne. Which one would be used in the
vertex method of determining positions on the great circle?

7. Determine the longitude of the point at which the great circle from
San Francisco to Melbourne crosses the equator. What is the great circle
course at that point? What is the distance from San Francisco?

134. Great circle positions and courses. Vertex method.

In deriving the fundamental formulas relating to the spherical
oblique triangle (§120 and §128) we used as a basis for the
proofs the right triangles formed by drawing an arc through
one of the vertices and perpendicular to the opposite side. We
follow this plan now. As before, two cases will arise according
as the perpendicular falls within the base or on the base pro-
duced.

Note. In §128 the unknown parts of the triangle were expressed in
terms of the given parts and an auxiliary arc m. In the present section
both m and p (or their equivalents e and p) are used to determine the
unknown parts. Here e is taken as positive.
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In Fig. 91 we have a g.c. CBVV’ part of which, namely arc
BC, is assumed to be the track of a ship sailing from B to C.

In §133 we calculated the distance BC and the courses at B
and C. We also calculated the position (latitude and longitude)
of a point X, lying on BC at a given distance from B, and the
course at X.

When several points like X are chosen to break a long arc
into smaller segments, a convenient method for caleulating the
positions and courses at these points will now be explained.
We call it the * Vertex Method.”

Follow around on the great circle to the point where it is
farthest from the equator. Call this point V, the ‘ vertex ”’ of
g.c. BC. There is of course the opposite point V’ where the g.c.
is again farthest from the equator. In a given case there will
be no question about which one to use.

At V the g.c. BC cuts the meridian EP at right angles. So
arc PV is the perpendicular drawn from P on BC produced.
To find the position and course at X we use right triangle PVX.

If point B were taken to lie beyond vertex V, the foot of the
perpendicular, or point V, would fall between B and C.

We represent the two cases in the figures which follow. Angle
B is acute in the first figure, obtuse in the second.

In either figure, P is the north pole, B and C are two points
of known latitude and longitude, V is the northern vertex of
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g.c. BC (that is, the foot of the meridian arc PV drawn perpen-
dicular to BC), X is a point on the g.c. track at a given distance
from B.

To determine the latitude, longitude, and course at X we
first solve right triangle PV B, then right triangle PV X.

“-m

Fia. 92a

We first calculate angle 8, from the known positions of B and
C.

Then, in right triangle PV B we have the angle at B and the
hypotenuse c.

Napier’s rules give the formulas for p, ¢, E:
1) sin p = sin ¢ sin B, Check.
2) tane = * tan c cos B, sin p = tan ¢ cot K.
3) cot E = + cos c tan B.

Use the + sign if 8 < 90°, the — sign if 3 > 90°.
In right triangle PVX we now have p, the polar distance of
V, and arc VX =z = BX ¥ ¢, T according as 8 S 90°.
Napier’s rules give the formulas for q, I, u:

4) cosq = cos p cos Z, Check.
5) cot! = sin p cot z, cos q¢ = cot I cot w.
6) cot u = cot p sin z.

The coordinates of V are: ¢y = 90° —p; Ay =Ap + E.
The coordinates of X arc: ox = 90° —q; Ax =Ap+ 1L
Course at X = u.
It may be noted that we might consider the values of ¢ and E

as signed numbers and drop the ambiguous sign + in formulas
2) and 3) and in following equations.
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Example.

We use S and H of Problem 1, §133, as B and C respectively. Also
we take point X so that BX = 1000 miles = 1000’ = 16° 40’. We keep
the letters used in equations 1) to 6).

From given data Computed
In PSH: b=_68°40 a= 38°46’ (Prob. 1)
c = 42° 20/ B =120°15  (Prob. 2)
a = 35°30’ vy = 38°38 (Prob. 2)

Since 8 > 90° we use the lower signs.
Calculation of p, ¢, F, with ¢ = 42° 20’ and g = 120° 15",

log log log
sin ¢ = 9.8283 tan ¢ = 9.9595 cos ¢ = 9.8688
sin 8 = 9.9365 cos B = 9.7022n tan g = 0.2341
sin p = 9.7648 tan e = 9.6617 cot E = 0.1029
p = 35° 35 e = 24° 39 E = 38°16¢’

z = BX + e =16°40' + 24° 39’ = 41° 19",

Calculation of ¢, I, u; with p = 35° 35" and x = 41° 19’.

log log log
cos p = 9.9102 sin p = 9.7648 cot p = 0.1454
cos r = 9.8757 cot z = 0.0560 sin z = 9.8197
cos ¢ = 9.7859 cot [ = 9.8208 cot u = 9.9651
q = 52° 2l I = 56° 30 u = 47° 18’

Coordinates of V: o= 54°25, N= 84°04.
Coordinates of X: e =37°3%, x=140°34".
Course at X: u = 47°18".

The student is advised to solve this example independently,
without using the special notation of formulas 1) ...6). Na-
pier’s Rules are sufficient. Two steps are involved:

(a) solve right triangle PSV, given side PS and angle PSV;
(b) solve right triangle PXV, given side PV and angle SPV.

EXERCISES

1. Solve Exercise 1 of §133 by the vertex method.

2. Solve Ixercise 2 of §133 by the vertex method.

8. If the signs + in formula 2) are dropped, and the equation is written
tan e = tan ¢ cos g, examine the signs of side e according to the quadrants
of side c and angle 8. Similarly for angle E in formula 3).
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135. Terrestrial coordinates of selected stations.
This list is placed here to afford material for drill exercises.

Place Lat. Long. Place Lat. Long.
o ’ o ! o ’ o ’
Berlin +52 30 - 13 22 Montreal +45 30 + 73 35
Bombay +18 54 — 72 49 Moscow +55 45 — 37 34
Boston +42 22 + 71 4 New York +40 45 + 73 56
Cape of Good Paris +48 50 - 2 20
Hope -33 21 - 18 30 Riode
Dutch Harbor + 53 53 + 166 35 Janeiro -22 54 + 43 10
Greenwich +51 29 0 0 Rome +41 54 - 12 29
Havana +23 10 + 82 22 San Francisco + 37 47 +122 26
Hong Kong +22 18 -114 10 San Luis -33 18 + 66 20
Honolulu +21 20 + 157 50 Santiago -33 3¢ + 70 41
Johannesburg —-26 11 - 28 4 Seattle +47 40 + 122 20
Leningrad +59 56 - 30 17 Singapore + 118 -103 51
Liverpool +863 24 + 3 4 Sydney -33 52 -151 12
Manila +14 35 -120 59 Tokyo +35 39 -139 45
Mare Island +38 6 +122 16 Valparaiso -33 2 + 7139
Melbourne - 37 50 - 144 59 Washington +38 55 + 77 4
Mexico City +19 26 + 99 7 Wellington -41 8 -174 46
136. EXERCISES 52 *

1. Calculate the sides (in statute miles), the angles, and the area (in
square miles) of the triangle whose vertices are:

New York — San Francisco — Mexico City.

2. Calculate the sides (in nautical miles), the angles, and the area (in
square miles) of the triangle whose vertices are:

New York — Rio de Janeiro — Liverpool.

3. Find the distance along the great circle from Boston to Wellington
in New Zealand.

4. A vessel sails on a great circle from San Irancisco to Sydney.
Find the courses of departure and arrival and the distance sailed.

6. If the vessel in Iixercise 4 is on the great circle 1440 nautical miles
out from San Francisco, what is her position (¢ and \) and on what course
is she sailing?

6. An airplane is to fly from Dutch Harbor to Tokyo. Calculate the
great circle distance and courses of departure and arrival.

7. As in Exercise 6, for a flight from Manila to Tokyo.

8. (a) Calculate the great circle distance, Sydney-Valparaiso. (b) Cal-
culate ¢ and X for points on this great circle at intervals of 10° from Sydney.

9. Find the shortest distance between two points on the Arctic circle
which differ by four hours in longitude. How far is it between these points
on the Arctic circle?

10. If a person were to start from a point in 80° north latitude and go al-
ways directly east for a distance of 2000 miles, how much shorter would the
great circle distance be?
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137. Rhumb line. Mercator chart.
Rhumb line.

Any great circle track, except the equator or the meridians,
will cut successive meridians at a constantly changing angle.
In the problems of §133 we saw that the great circle Seattle-
Honolulu cuts the meridian through Seattle at an angle 59° 45';
1000 miles from Seattle on the great circle the angle is 47° 18';
at Honolulu the angle is 38° 38’. Therefore, to follow the g.c.
track, the navigator would have to change continually the
course of his ship.

To avoid this impossible performance, the latitudes and lon-
gitudes of a number of points on the great circle are calculated,
and the ship proceeds from one point to the next by following a
track which is not a great circle but which cuts all meridians at
the same angle and is called a rhumb line. This line is longer
than the g.c. track. But for moderate distances the difference
of length is small, and is more than offset by the convenience of
steering a fixed course.

The problem arises: What course must be set to go from a
given point A to a second given point B, without changing the
course? This problem is solved by use of the Mercator chart.

On such a chart the track of a ship or airplane which travels
on a fixed course appears as a straight line, the rhumb line.
Meridians appear on the chart as parallel straight lines, all of
which are cut at the same angle by the rhumb line. A graphie
solution of the problem is, therefore, obtained by marking the
positions of the two joints A and B on a Mercator Chart, joining
them by a straight line, and measuring the angle at which this
line cuts any meridian.

The Mercator chart.
The theory of this chart can not be discussed here. We shall
only indicate the plan of its construction and how it is used.
Imagine a cylinder to be wrapped around the earth touching
the earth’s surface along the equator, the axis of the cylinder
coinciding with the earth’s polar axis extended in both directions.



200 APPLICATIONS

To make a map of the earth’s surface on this cylindrical sheet,
we obtain the point S on the cylinder which corresponds to a
point R on the earth’s surface by constructing the broken line
ORS as shown in Fig. 93.  If the radius were eontinued directly
on it would meet the cylinder in a point higher up, and a small
increase in the latitude of the point R on the surface of the earth
would lead to a great increase in the height of the corresponding
point on the cylinder. To moderate somewhat this rapid in-

75°

60

45°

30°

15°

0 15° 30° 45° 60°
Fra. 93 Fra. 94
crease in height of the point S” as the point R moves toward the
pole, line RS is drawn at an angle to OR which is determined by
the theory of the map.

By this construction every point R on the surface of the earth
will lead to a point'S on the cylinder.

If the point R follows a meridian as ERP, the point S will
move up on the cylinder following a straight line which is an
element of the cylinder. If we draw meridians on the earth’s
surface, say at intervals of 15° of longitude, we can imagine the
corresponding straight lines drawn on the cylinder. These will
be elements of the cylinder spaced equally around the cylinder.
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If the point R describes a parallel of latitude, the point S
will move around the cylinder in a circle parallel to the equator
and at a distance ES above the equator. If we draw several
parallels of latitude, say 15° apart, they will lead to circles on
the cylinder with unequal spacing, the spaces becoming wider
as we go north.

If we now cut the cylinder open along one of its elements and
roll it out flat, we will have a plane map on which the meridians
of the earth’s surface are represented by parallel straight lines
which are elements of the original cylinder. Equally spaced
meridians will correspond to equally spaced parallel lines. Each
parallel of latitude will be represented on the plane map by a
straight line parallel to the line which represents the equator.
As the latitude parallels are taken farther north the spacing
between the corresponding lines on the map will increase rap-
idly as we approach the pole. (Fig. 94.)

If two points, A and B, are selected on the surface of the
earth, and if they are ‘“ projected ”” on the surface of the cyl-
inder to yield the points A’ and B’, these points will then appear
on our planc map. The great circle track AB could be repre-
sented point by point and would yield a curve on the map.

The plane map which we obtain in this manner is called a
Mercator chart. On this chart a great circle arc AB will appear
as a curve joining the corresponding points A’ and B’. The
straight line on the map joining points A’ and B’ is the rhumb
line. The angle which this linec makes with the meridians will
show the navigator the fixed course to sail from A to B on the
earth’s surface.

The rapid increase of distance between the parallels’ of lati-
tude on the map which correspond to equally spaced parallels
of latitude on the earth’s surface causes distortion. As is seen
by inspection, a 15° change of latitude on the earth requires a
wider spacing of the parallels on the map as we move north.
There is also distortion due to the fact that on the earth’s
surface two meridians converge as we approach the pole,
but on the map the lines representing these meridians are par-
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allel. Because of this distortion or stretching lines on the map
must be reduced to obtain their equivalent length on the earth’s
surface. The theory of the map tells us that a short line seg-
ment on the map must be multiplied by the cosine of the latitude
to obtain the corresponding length on the earth’s surface. If
the two ends of the line segment lie in different latitudes, we
multiply by the cosine of the maddle latitude as a close approxima-
tion.

138. Construction of a Mercator chart.

Let point A be situated on the ecarth’s surface in latitude ¢
and longitude \. Let point 4’, which represents A on the map,
be placed at a distance z from the meridian of Greenwich and
at a distance y from the cquator. We shall call x and y the
Mercator coordinates of point A’. They arc caleulated by the
following formulas, as multiples of the unit which is used to
represent 1’ of longitude on the equator.

) z = A (in minutes); y = 7915.71 log cot ip.

Here p is the polar distance of point A. The numerical factor
in the value of y is given more accurately than is needed for our
calculations; its logarithm to seven places is 3.8984896.

Fig. 95 represents a Mercator projection of a portion of the
earth’s surface, including the are from Seattle to Honolulu.

Example.
Longitude Latitude z Y
S = Seattle 122° 20’ = 7340’ 47° 40 7340 3261.8
H = Honolulu 157° 50’ = 9470’ 21° 20/ 9470 1310.7

To make a chart showing the points (x, y) which represent S
and /I respectively we choose a suitable seale along the equator,
say 1 inch = 7.5° = 450’ of longitude. The points S’ and H’
are the opposite corners of a rectangle whose width is the dif-
ference of the two values of x, 9470 — 7340 = 2130; its height
is the difference of the two values of y, 3261.8 — 1310.7 =
1951.1. On the indicated scale the rectangle would be about
4} inches wide and 4} inches high.
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For any two stations A and B of given latitudes and longi-
tudes we can calculate the coordinate (z,y) and construct a
rectangle with A and B at opposite corners.

| .
150° 165° 180° 165° 150° 135° 120° 105
Fia. 95

In calculations involving latitude the middle latitude of the
rectangle is used, as stated at the end of §137.
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Notation. Let

D = the length of the diagonal of the rectangle;

A z = the difference of the z-values or width of rectangle;

A y = the difference of the y-values or height of rectangle;
C = the acute angle between the diagonal and a meridian.

Problem 1.

To find the rhumb line course (r.l.C) and the rhumb line distance
(r.1.d) between two points of given latitudes and longitudes.

Angle C above defined is the rhumb line course. Therefore

, Az

(2) tan rl.C = Ay
The rl. distance can be calculated, though only approxi-
mately, by multiplying D by the cosine of the middle latitude,
€OS ¢m, to get the corresponding length on the earth’s surface, as

stated at the end of §137. But D = A y sec C and therefore
rld = A y sec C cos ¢m, approximately.

Now by reducing A y by the factor cos ¢m it becomesz A ¢, the

difference of latitude in minutes: A y cos ¢m = A ¢, approxi-

mately. Substituting this in the preceding equation we have
3) rld = A ¢ sec (rl.C).

Example.
Determine the r.. course and the r.l. distance between A(40° N,
40° W) and B(43° N, 43° W).
From (1), for 4, z = 2400, y = 2624;
for B, z = 2580, y = 2863.
sz =180, Ay=239, tan (rl.C)=4;2, rl.C= N 36°59 W.
rld = a ¢ sec (r1.C) = 180 sec 36° 59’ = 225.3".

Problem 2.

A ship starts from point A of given latitude and longitude and
steams a distance d at a fixed course angle C; to determine the
change in latitude and in longitude.

For the change in latitude equation (3) gives
4) A ¢ =rld cos (r.l.C).
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Tor the change in longitude, A N, we have
(5) A XN= A zxsecon =dsin C sec ¢m, approximately.

We may note here that A z is the same as “ departure” in
plane surveying or plane sailing and lies along a parallel of
latitude. The length of the corresponding segment of the
cquator, or the difference of longitude, is A = sec ¢n.

Example.
A ship starts from (40° N, 40° W) and steams 225 miles on course
N 37° W. Determine the latitude and longitude arrived at.
A =225 cos 37° = 179.7" = 2° 59.7’,
¢ = 40°4 2° 59.7" = 42° 59.7".
AN = 225 sin 37° sec 41° 30’ = 180.8' = 3° 0.8’
A=40°+3°0.8 = 43°0.8".

Note that the values of d and €' here given are practically the values
caleulated in the preceding example.

EXERCISES 53

1. Caleulate the values of r.l.C and of r.l.d for the rhumb line track
A(40° N, 43° W) to B(43° N, 40° W).

2. (a) Construet the framework (grid) of a Mercator chart for ¢ = 15°,
30°, 457, 607 and X = 120°, 135°, 150°, 165°. (b) Calculate the Mercator
coordinates of Seattle and Honolulu and mark them on the chart.

3. (a) Construet a Mereator grid for the region X = 165° IY eastward
to XN =75"W, and ¢ = 30°S to 60°S. (b) Caleulate the Mereator coor-
dinates of Sydney and Valparaiso and mark them on the map. (e¢) Plot
on this chart the positions of the great cirele points caleulated in Exercise
8(b) of §136.

4. Determine the g.c. distance and the rhumb line distance from New
York to Boston.

6. Determine the latitude in which the rhumb line Seattle-Honolulu
cuts the 135th meridian.

6. Compare the rhumb line distance between two points on the arctic
circle which are separated by 180° longitude with the great cirele distance
between these points.

7. Two stations both in the northern hemisphere are separated by 5°
in latitude and 30° in longitude. What can you say about the position of
the great circle between these stations, whether it is north or south of the
rhumb line?

8. An airplane is flying on the great circle track from Seattle to Honolulu

at 200 knots per hour. What are the coordinates of the position reached
when four hours out of Seattle?
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139. Summary of methods used in navigation.
We first note that there are three ways of reckoning the course
angle C.

1) The acute angle between heading of ship and the merid-
ian; call this C..

2) The angle between heading of ship and meridian counted
from the north (or south in the southern hemisphere) through
the east or west from 0° to 180°. Call this C..

3) The angle between the heading of ship and the north (or
south in the southern hemisphere) through the east, from 0° to
360°. Call this Cs.

Plane Sailing. §56.
diff. lat. = d cos C; departure = d sin C.
Here C is C; or Cq; if Cq, diff. lat. is a signed number.

Traverse Sailing.

Plane sailing when the track consists of several legs, as in
Exercise 1 of §56.

Parallel Sailing.
The course is due east or west, along a parallel of latitude.

diff. lat. = 0, departure = d, the distance run.
diff. long. = departure times sec ¢.
Middle Latitude Sailing.

diff. lat. = d cos C; departure = d sin C.
diff. long. = departure times sec ¢m, approximately.

Here the use of the middle latitude ¢ takes account, at least
approximately, of the convergence of the meridians. The two
stations must lie on the same side of the equator.

Great Circle Sailing. §133, §134.

I. To find the g.c. distance and the initial g.c. course for the
g.c. track from A to B.
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(a) Solve triangle PAB as under Case V of §127; or
(b) use the haversine formulas:

hav d = hav | A¢ |+ cos ¢p cos ¢a hav [|'AN|.  §129, (34).
sin C = cos ¢p sin AN cse d.  (Law of sines.)

When the quadrant of C is not known in advance, calculate C

from

haveco op — hav|d — co 4|
sin d sin co ¢4

hav C =

§129, (33).

II. Coordinates of vertex of g.c. track.
cos ¢y = €0s ¢a sin C; tan (Ay — Aa) = esc ¢a cot C.
III. Latitude of point X on g.c. track A B when the longitude
of X is given.
cot ox = cot ¢y see | Ax — Ay .

Composite Sailing.

A combination of g.c. sailing and parallel sailing when the g.c.
track reaches too high altitudes. A selected part of the ““ top ”’
of the g.c. is cut off by a parallel of latitude.

Mercator Sailing. §138.
I. To determine the rhumb line course and the rhumb line
distanee between two given points:
Az
Ay’ rld = Ae sec (r.1.C). |
z = X\ (in minutes); y = 7915.71 log cot 3p.

tan r.l.C =

II. To determine the change in latitude and longitude due
to sailing a given r.l. course and distance:

Ay¢ =rldcos (rl1.C); AN = dsin ¢ sec ¢m, approximately.

140. Applications to the celestial sphere.

For the purpose of this article we assume the celestial sphere
to be an indefinitely large sphere concentric with that of the
carth. On it as a background we see all celestial objects.

The projections on the celestial sphere of the earth’s poles,
equator, meridians and parallels of latitude are named respec-
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tively the celestial poles (P, P’ in the figure), the celestial equator
or simply equator (QuwQ’e), hour circles (as PSE), and parallels
of declination (as MSM').

An observer at O on the earth’s surface will have his zenith
at Z, where the plumb line at O,
if produced, would meet the celes-
tial sphere; his horizon is the great
circle swne, whose pole is Z; his
meridian is the great circle nPZQs,
mecting the horizon in the north
and south points.

Let S be a point on the celestial
sphere, as the sun’s center, or a
star. Because of the rotation of
the earth, S will appear to de-
scribe the parallel ¢/ MSw'M’e’, rising at ¢ and setting at w'.
When S has the position shown in the figure, HS is its altitude,
denoted by h (height above horizon); £ sZH (measured by
arc sH) is its azimuth, denoted by A; Z8S, or 90° — A, is the
zenith distance of S and denoted by z. Thushand A, or z and A,
completely define the position of S with reference to horizon
and zenith.

With reference to the cquator and pole, ES is called the
declination of S, denoted by 5, and £ QPE (angle which
hour circle PS of S makes with meridian PQ) is called its hour
angle, denoted by t; PS or 90° — 6 is the polar distance of
S, and denoted by p. Thus the position of S is defined by
6 and ¢, or by p and &.

A PZS is called the astronomical triangle; its parts, except the

angle at S which we shall not need, are: z
PZ = 90° — nP = 90° — ¢; o2
(¢ = latitude of 0.) coh
PS =p =90° - 3, P >
ZS =z =90° — h; N
£ ZPS =t s

£ PZS = 180° - A. Fic. 97
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141, Problems involving the astronomical triangle.
Problem 1.

To find the local mean time from an observed altitude of the sun;
the latitude of the observer and the declination of the sun are assumed
to be known.

To determine his local time the navigator takes a time sight. That is,
he measures with his sextant the altitude of the sun above the horizon.
This gives him side ZS in triangle PZS.

In the Nautical Almanac he can look up the declination of the sun,
which gives him side PS. His known latitude gives him side PZ.

He then has three sides of the triangle from which to calculate angle
ZP8, or t, the sun’s hour angle. This gives him the local time.

Irom the local time, and the Greenwich time as shown by his chro-
nometer at the moment when he observed the sun’s altitude, he can
determine his longitude.

Problem 2.

To determine the latitude by observing the altitude of the sun (or
a star) when it crosses his meridian.

He starts measuring the altitude of the sun a little before local noon
and continues measurements until the altitude begins to fall off. The
greatest obzerved value is the meridian altitude.

This gives him are sV in Fig. 96. Subtracting the sun’s declination,
are QV/, (or adding it if the sun is south of the equator) gives are sQ.
The complement of are sQ is his latitude.

Problem 3.

To find the latitude by noting the time when the sun (or a star)
bears due west, or due east.

This is for observation on land where the observer can point his
transit due west or east and wait for the sun or star to cross the field
of view.

In this case angle PZS is 90°. The time of the observation gives
angle ¢, and the sun’s declination gives side PS. Solving for side PZ
gives the co-latitude.

Problem 4.

Find the hour angle and azimuth of Polaris when at greatest elon-
gation, given the declination of the star and the latitude of the station
of observation.

Consider the star’s diurnal path about the pole. When the star
is at greatest elongation, the great circle ZS (Fig. 97) is tangent to the
diurnal circle, of which PS is a radius. Hence triangle PZS is right-
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angled at S; PZ and PS are known, and the angles at P and Z may
be found by aid of Napier’s Rules.

Problem 5.

In a given latitude, and for a given declination of the sun, find
the sun’s hour angle at sunset and the length of day (sunrise to sunset).

Here S is on the horizon (at w’ or at ¢’) and PZS a quadrantal tri-
angle. We obtain ¢t by solving the polar right triangle for 180° — ¢.
The length of day will be 2¢.

142. EXERCISES 54

1. The meridian altitude of the sun was observed to be 61°27’; the
sun’s declination was 12° 15’. Find the latitude.

2. The meridian altitude of Rigel was 74° 32’; the star’s declination
was — 8°16’. Find the latitude.

3. Find the length of the longest day in latitude 60°. The sun’s
declination on that day is 23°27’. Find the length of the shortest day in
latitude 60°. Declination is — 23° 27’.

4. In latitude 40° 49’ the sun’s altitude is observed to be 20°20/; its
declination is 15° 12’; find its azimuth and hour angle.

6. With latitude and declination as in Exercise 4, find the sun’s hour
angle when it is due west; when it sets; find its azimuth at sunset; find
the length of day.

6. With latitude and declination as in Iixercise 4, find the sun’s altitude
and azimuth when its hour angle is 45°.

7. The sun, in declination 12°22’) is observed to have an altitude of
30° when due west. What is the latitude of the station?

8. The declination of Polaris being 88° 49/, find his azimuth and hour
angle at greatest eclongation at a station in latitude 40° 49’

9. As in Exercise 8 for the star 51 Cephei, & = 87° 11, and for § Urse
Minoris, § = 86° 37".

10. The stylus of a horizontal sundial consists of a rod pointing to the
north celestial pole. Hence its shadow falls due north when the sun is on
the meridian, that is, at apparent noon. What angle does its shadow make
with the meridian one hour after apparent noon, at a place in latitude 40°?

(Suggestion. In Fig. 96 let nP =40° and £ ZPS = 1% or 15°. The
stylus lies in the line P’P, and its shadow, cast by the sun S, must lie in
the plane SP’P, and hence will fall on the plane of the dial, swne, along
the line of intersection of these two planes. This line will be determined
by the center of the sphere and the point where arc SP produced will
meet arc ne. Call this point S’. Then arc nS’ measures the required
angle, and may be found by solving right A nPS’, in which nP = 40° and
Z nP8' = 15°).

11. What angle does the shadow of a horizontal sundial make with its
noon position ¢ hours after noon in latitude ¢?

Ans. tan z = tant sin ¢, z being the required angle.

12. Calculate the angles which the hour lines of a horizontal sundial
make with the noon-line in an assumed latitude.



ANSWERS TO THE ODD NUMBERED EXERCISES

Exercises 1. §4.

sine cosec. cosine secant  tangent cotan.

1 4/5 5/4 3/5 5/3 4/3 3/4.

3. -4/5 - 5/4 3/5 5/3 -4/3 - 3/4.

b. 5/13 13/5 12/13 13/12 5/12 12/5.

7 -5/13 - 13/5 12/13 13/12 -5/12 - 12/5.

9 15/17 17/15 8/17 17/8 15/8 8/15.
11. - 15/17 - 17/15 8/17 17/8 -15/8 - 8/15.
13. 3/V13  V13/3 2/V13 V13,2 3/2 2/3.
6. -3/V13 - +V13/3 2/V13 V132 -3/2 -2/3.

Exercises 2. §8.
sine cosine tangent cotan. secant, cosec.
1.  0.537 0.842 0.638 1.580 1.188 1.872.
cosines secants
3. 0.484 0.469 0.454 0.438; 2.073 2.146 2.220 2.293.

5. 45°, 45° 45°.

Exercises 3. §11.

a sin a cse a Cos « sec a tan « cot a
1. 67°: 12/13 13/12 5/13 13/5  12/5 5/12.
3. 24°: 0.4 2.5 V21/5  5/V21 2/V21 V212
5. 70°: v8/3  3VE/8 1/3 3 V8 V8/8.
7. 71°:  3VvV10/10 V10/3  V10/10 V10 3 1/3.
9. 45°: V2/2 V2 V32 V2 1 1.
11. 60°: V3/2  2V3/3 1/2 2 V3 V3/3.
18. 73°:  V91/10 10V91/91 3/10 10/3 V91/3  3V91/91.
16. 84°: 10V101/101 V101/10 V101/101 V101 10 1/10.

Exercises 4. §14.

1. b, ¢, 8: 142.8, 174.3, 55°. 8. a, b, B: 55.8, 50.2, 42°. 6. q, ¢, B: 470,
886, 32°. 7. a, b, B: 0.034,0.029, 40°. 9. b, ¢, a: 21.4,27.2,38°. 11.81.9
ft. 18. 104.6 ft. 16. 291ft. 17. 35°. 19.10.0in.

211



212 ANSWERS TO ODD NUMBERED EXERCISES

Exercises 6. §29.

sine cosine tangent | cotangent | secant | cosecant
1 cos 50° [—sin 50° |- cot 50° |- tan 50° |- ecsc 50° sec 50°
3. |- sin 55° |- cos 55° tan 55° | cot 55° |- sec 55° |- ese 55°
b. |- cos 85° | sin 85° |- cot 85° |- tan 85° cse 85° |- see 85°
7. |- sin 65° |- cos 65° tan 65° | cot 65° |- sec 65° |- cse 65°
9 sin 42° | cos 42° tan 42° | cot 42° see 42° csc 42°
11. sin 50° | cos 50° tan 50° [ cot 50° sec H0° ese H0°
13. sin 40° | cos 40° tan 40° | cot 40° sec 40° cse 40°
16. |- cos 85° sin 85° |- cot 85° [~ tan 85° cse 85° |- sec 85°
17 cos 15° | sin 15° cot 15° | tan 15° ese 15° see 15°
19. cos 20° [—sin 20° |- cot 20° (- tan 20° {[- esc 20° sec 20°
21. sin 25° | cos 25° tan 25° | cot 25° sec 2H° cse 25°
23. cos 20° | sin 20° cot 20° | tan 20° cse 20° sec 20°
26. Vv3/2 -1/2 | - V3 - V3/3 -2 2V3/3
27. /2| -Vv3/2 | -V3/3| -Vv3 |-2V3/3 2
29. -1/2 V32 | -V3/3| -V3 2v3/3| -2
31. | - V3,2 1/2 | - V3 - V3/3 2 | -2V3/3
33. Vv3/2 -1/2 | - V3 - V33 -2 2V'3/3
386. | — V3/2 -1/2 V3 V3/3 -2 |-2v3/3
37. | - V32 1/2 | - V3 - V3/3 2 | -2Vv3/3
39. v3/2 -1/2 | - V3 - V3/3 -2 2Vv3/3

Exercises 7. §24.

sine cosec. cosine secant, tangent  cotan.
1 - V2/2 -2 V2/2 V2 -1 ~1.
3 -V3/2 -2Vv3/3 1/2 2 —V3  _ Vi3
5. -—-V3/2 -2V3/3 -1/2 -2 V3 Vv3/3.
7. —-V72/2 V2 V22 - V2 1 1.
13. V22 V2 V22 - V2 -1 1.
Exercises 8. §925.
1, 3. 5. 7. 9. 11.
vers 6: (2-V3)/2  1/2 3/2  (2+V3)/2  3/2 1/2
covers0:  1/2  (2-V3)/2(2-V3)/2 1/2  (2+V3)/2 (2-V3)/2
hav 6:(2-V3)/4 1/4 3/4 (2+V3)/4 3/4 1/4

Exercises 9. §28.

1. 15°, 300°, 561°, 288°, 264°. 8. 75°, — 85° 56’ 37, 81° 17’ 45", 21°
48/ 107, 80° 48 35". 6. 16° 33’ 36", 264° 3, 110° 48’ 13”. T. 25x/12,
—x/8, 257/24, 1.85005, 1.63625. 9. 0.002909, 0.000048, 0.00000048,
0.21091, 0.37703.

Exercises 10. §29.
1. 12V/3, 8r, 487 - 36V3. 3. 5V2.
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Exercises 11. §31.

3. Radians: 1/4, 5/4, 1/5, 1/50; degrees: 14.32, 71.62, 11.46, 1.15.
5. 120 in., 128 in., 1700 sq. in. 7. 0.5 rad. 9. Angle = 0.4 rad. = 22° 55/,
arc = 19.88, sector = 500, triangle = 486.7, segment = 13.3. 11, 3 rad.
13. 90. 16. 270 rad./sec.

Exercises 12. §33.

1. 05360, 0.6350, 1.1846. 13. 0.84407, — 1.5740, - 1.8648.
3. 0.8820, 1.8715, 2.1220. 16. 0.88203, 1.8718, 2.1222.
6. 0.8442, —1.5747, —1.8656. 17. 0.43388, 0.48158, 1.1099.
7. - 0.8820, 1.8715, —2.1220. 19. - 0.90930, - 2.1850, 2.4030.
9. - 0.8442, 15747, - 1.8656. 21. 0.97493, 4.3814, 4.4940.
11, 04712, -0.5343, — 1.1338.  23. 0.54064, 0.64266, 1.1887.

Exercises 13. §35.

1. 45° + 2nw, 135° +2nw. 3. 30° + 2nm, — 30° 4+ 2n7. 6. 30° + 2nm,
150° + 2n. T. 45° + 2nm, — 45° 4 2nr. 9. 45° + 2nm, — 135° + 2n.
11, - 45° + 2nm, 135° + 2nm. 13. 17° 24’ 4- 2nm, 162° 36’ + 2nx.
16. 31°48' + 2nm, — 148°12' + 2n7. 17, 121°48' 4 2nx, — 121°28' + 2nr.

Exercises 14. §36.
(In each case the first angle is the principal angle.)

1. 60° 120°. 3. 30° - 150°. b. —45° 135°. 7. - 63° 26', 116° 34,
9. + 75° 31, 11. 41° 49, 138° 11'. 13. + 131° 49’. 1b6. + 126° 52'.
17. - 41°49. 19. 48°11’. 21. 80°58. 23. - 60°57. 2b. 61°38".
27. 138°35". 29. 55°23'.

Exercises 15. §37.
1. 30°+nr, 90°+nr. 8. 51°4+n-72° — 3°+n-72°. b. 10° +n-45°,
—20° +n-45°% 7. 138° 54’ 4 3nw, — 78° 54’ + 3nw. 9. 25° + n-90°

Exercises 16. §39.

sin cos tan cse sec cot
1.|-2/3 + V5/3 +2V5/5 —~3/2 +3V5/5 + V52
3.{+3/5 + 4/5 —3/4 + 5/3 + 5/4 - 4/3
5. |+ 1/2 t V32 - V33 +2 +2V3/3 - V3
7. |+ 40/41 - 9/41 + 40/9 + 41/40 — 41/9 + 9/40
9. |—4/5 + 3/5 + 4/3 —5/4 + 5/3 + 3/4
1 Vm: — 1 1 m I ey
- —— - + vVm? —1
11, po + — t vas m + et
T TeNuT 1 4h 1 1 VIoh— 2
18. |1 h + —2h — k|t —— —_— + —— —_— =
+ vVooh-m 1tk Vooh -t T Fh
15 a? — b 2ab + a? — b a? 4 b? a? 4 b? 2ab
* at + b2 at + b? 2ab a? — b? 2ab at — b2
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Exercises 17. §40.
3. (1+ V1 ~sin?z)/sin?z. B6. 2csc?6/(csc?6 — 1).

Exercises 18. §41.

1. nm; 30°+ 2nw, 150° + 2nm. 8. 60° + 2nw, — 60° + 2nwx. 6. 45°
+ 2nm, 225° + 2nw; — 45° + 20w, 135° + 2nw.  (More compactly: nx + 45°).
7. nx; + 60°+2nw. 9. £ 60° + 2nm, + 120° + 2nw. (More compactly:
nr + 60°.) 11, 22° 30’ + 2nmw, 202° 30’ + 2nw; - 67°30' + 2nw, 112°
30’ + 2nw. (More compactly: nr +22° 30’; nr - 67° 30".) 13. - 126°
52" + 2nw.  16. 90° + 2nw; 36° 52" + 2nw. 17, 45° + 2nw, 225° + 2nmw;
- 71° 34’ + 2nm, 108° 26’ + 2nw. 19. 36° 52’ + 2nw.

Exercises 19. §44.

1. q, b, B: 52.02, 24.61,25° 19".  26. b, c, B: 29.186, 37.562, 50° 59.2".
3. a, b, a: 2344, 1415, 58° 53". 27. a, b, a: 12758, 14247, 41° 50.7".
6. b, ¢, B: 2661, 3058, 60° 20", 29. b, ¢, a: 163.15, 313.04, 58° 35.3".
7. a, ¢, «: 1.097, 1.179, 68° 27.  81. b, a, B: 420.72,29° 8.2, 60° 51.8".
9. b, ¢, a: 2352, 3937, 53° 19", 33. a,c, B: 234.52, 481.67, 60° 51.8".
11. q, c, : 0.0873, 0.0913, 17°0".  36. ¢, a, B: 42.223, 50° 28.3’, 30° 31.7".
13. a, b, «: 889.0, 236.0, 75° &". 37. a, b, a: 32.567, 26.873, 50° 28.3".
16. b, ¢, a: 0.04055, 0.05397, 41° 18". 39. a, «, B: 28641, 41°31.3’, 48°28.7".
17. a, o, B: 52.02, 64° 41, 25° 19'.  41. a, B, v: 200.02, 50° 1.5, 69° 58.5".
19. ¢, o, B: 3037, 53° 19, 36° 41".  43. b, a,v: 199.77, 42°3.7’, 81° 10.3".
21. b, o, B: 0.0267, 73° 0/, 17°(Y,  46. a, b, v: 119.91, 209.93, 58° 50.0.
23. ¢, o, B: 0.05397, 41°18’, 48° 42",

Exercises 20. §49.

1. 17°14'. 8. 5°16’. b. 5670 ft. 7. 402.0 ft., 586.1 ft. 9. 23° 26¢'.
13. 809.1 in., 50360 sq. in. 15. 144.5 ft. 1T7. 34° 48'. 19. 34.55 ft.
21. 1418 ft.

Exercises 21. §50.

1. Proj. on OX: 100, 86.60, 70.71, 50, 0, — 86.60, — 50, 0, 50.
Proj. on OY: 0, 50, 70.71, 86.60, 100, 50, — 86.60, — 100, — 86.60.
3. Proj. on OX: 271.8, — 321.7, 271.8; on OY: 230.2, - 152.7, - 230.2.

Exercises. §52.
1. (170.5, 42°10"). 3. (111.2, 86°34’). b. (52.9,160°53"). 7. (123.0,
261° 5').
Exercises 22. §53.

1. (144.2,N26°6’E). 8. (216.7, N28°2’'E). 6. (157.1, N 33°49’E).
7. (195.1,8 34° 7' E).
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Exercises 23. §54.
1. (68.4 1b., 39° 19"). 3. (42.5 Ib., 124° 15’).

Exercises 24. §56.

1. W 30°22'S, 111.5 miles. 6. BL = AB = 3 miles. CL = 2.30 miles.
7. 6.72 miles. 11. 734 ft.

Exercises 27. §59.
1. 764 ft. 3. 8595 ft. 7. 3.44’. 9. 166 in., 9980 in.. 598000 in.

Exercises 28. §61.

1) 3) 5) 7) 9)
1. S5m. 2.5 . 6.7 1. 8.6 m. 33.3 nm.
2. 3000 yd. 750 yd. 2400 yd. 3333 yd. 2066 yd.
3. 32. 27. 135. 87.8. 81.6.
R 3200 _ — -
6. (a) exact, (b) exact, (¢) 177 m, (d) - m. 7. 40m. 9. 31.25 in.

Exercises 29. §61.

1. 610m. 133, 533M. 1217m. 735m. 8. 220Mm. 102Mm. 565m.
1001, 1127, 6. b,c, 8: 141,188,860 f1. 7. b, ¢, a: 364, 1250, 1300 M.
9. a,b,a: 594, 1430,400 M. 11. a,a, §: 640, 3521, 1048 .

Exercises 33. §70.

1. (V6 +V2)/4, (V6-V2)/4, 2+V3. 3.0, -1, 0. b. (V6 -
V2)/4, (V6 + V2)/4,2 - V3. T.(V6+ V2)/4,(V2 - V6)/4,-2 - V3.
9. —133/205. 11. (6+4V21)/25, (-6+4V?21)/25, (6-4V21)/25,
(-6 —4V21)/25.

Exercises 35. §74.

1. (1/2)V2+ \/3, 2- V3. (Compare with answers to Ex. 5, §70.)
3. 1/2.

Exercises 36. §76.

1. V3 cos 10°. 8. sin 10°. B. — 2 sin 65° sin 15°. 7. cos 10°. 9. 2
cos 105°sin 35°. 11. 2 cos 165° cos 115°. 18. sin 80° — sin 40°. 15. cos 40°
- cos 80°. 17. — 1 + cos 100°.

Exercises 37. §77.

1. 1,0, 8 156/205 - 133/205, - 41496/42025, - 6647/42025.
6. (+ V51 4V2)/9. T. + V7(75+ 32V3)/111. 9. 204/253. 11. 1/2.
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Exercises 38. §80.

1. 32°23'. 8. 32°2'. b. 43°3. 7. 6.362. 9. 35. 11. 34° 3, 44° 25;
101° 32'. 13. 82° 49', 55° 46/, 41° 25’. 16. 338.3 miles.

Exercises 39. §85. (4-place tables.)
1. b, ¢,v: 1260.6,1069.3,55°. 8. a,c, a: 4.999, 7.350, 38°. 6. @, b, a:
6758, 5802, 87° 40’. T. 657.8, 450.0. 9. 1067.5, 661.1. 11. 145.0, 110.6.

Exercises 40. §86. (4-place tables.)
1. a, 8, c: 54° 27', 65° 38, 851.3. 3. «, B, c: 26° 2/, 52° 18’, 497.5.
6. B, v, a: 44° 28’, 99° 24’, 3825. 1. « v, b: 15° 18, 12°42') 267.0.
9. 112° 28, 27° 32.

Exercises 41. §87.
(5-place tables used for exercises with starred numbers.)
1. 8, v, c: 33° 28, 119° 14/, 59.17; B, v/, ¢’ 146° 32', 6° 10’, 7.285.
3.* B, v, b: 32° 55, 88° 58/, 73.16; B, 7', b': 30° 52/, 91° 2/, 69.07.
b.* o B, a: 35°14.7, 21° 6.3', 2230.0.

Exercises 42. §88. (/-place tables.)
1. 70°40’, 47°47', 57° 33’. 3. 104° 30’, 32°3’, 43° 27’. 6. No solution.

Exercises 43. §90.
(5-place tables used. for exercises with starred numbers.)

1. a,c,v: 3675,5781,70°58". 8. a,b,3: 1566, 1068, 42°27’. b. c, e, B:
0.1776, 76° 207, 44° 53'. 1. ¢, B,v: 156.1, 26°43’, 131° 56'; ¢/, 5',v": 19.57,
153° 17/, 5° 22’. 9. «, B, v: 149° 49/, 3° 2/, 27° 9. 11.* B, v, b: 146°
43.6’, 14°3.7’, 3.5881. 13. b, o, B: 0.2729, 39° 37’, 117°51’; V', o/, B':
0.0907, 140° 23’, 17°5". 16. a, B,v: 0.00251, 70° 17, 51° 50’. 17. b, B,v:
0.000662, 83° 28', 32° 42’. 19.* a, o, B: 1.2379, 162° 18.8', 7° 8.4". 21.* q,
¢, v: 57285, 117600, 151° 19.6’. 23. b, «, v: 0.01068, 81° 51’, 55° 42'.
26.* «, a, c: 34° 32.1', 14261, 25100. 27. c, B, v: 584.1, 51° ¢/, 87° 38';
¢, 8,v": 100.9, 128° 51, 9° 56". 29. ¢, B,v: 1191, 32° 32/, 120° 10'; ¢/, &/,
4’ 125.7, 147° 28’, 5° 14’. 81.* a, B, v: 2496.1, 100° 10.2, 27° 38.8'".
33.% «, v, c: 39°39.1/, 90° 0.0/, 18464. 3b.* B, a, b: 14° 15.5, 0.031083,
0.010735. 37.* v, a, c: 32° 19.7, 43.738, 64.587. 89. c, o, v: 0.005708,
79° 20, 37°0’; ¢’, &, "t 0.002561, 100° 40, 15°40’. B61. 7, V129, 20V3.
63. 7/8. b6b6. 45° 60° 75° 612.3 ft., 683.0 ft. 67. 261.4. T1. 1.239 mi.
73. 1066 ft. 76. 40V/5 ft. TT. 45° 3. 79. 698.3 ft. 81. 22.3, 70.6 ft.
86. 62 ft. 87. 1142 ft. 91. 25, 33}, 41% ft. 93. 37.5 ft. 95. 28° 57, °
46° 34', 104° 29’; 5.892, 8.838, 11.784. (The exact values of the sides arc
20v2/23, 30v2/23, 40v2/23.) 97. 27.35 ch.; 97.46 A. 99. 14.4 ch.
north of AB. 101. 718.7 1b. 108. 2.51 sec. 105. 48° 53'. 107. Tolal

defl. = (1 —7)+ (' = 7r'), where r= Sin“(s%), r=a-7r, and 7' =
Sin~! (u sin 7).
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Exercises 44. §94.

1. 30°, /6. 8. —90° — x/2. Bb. 60°% x/3. 7. —30° —=x/6. 9. 30°
x/6. 11 90°, x/2. 13, 150°, 5x/6. 16. 90°, x/2.  1T. 30° /6.
19, —60°, — x/3. 21. 78°27'. 23. 54°44’. 26. 126°52". 27T. 71°34.
29. 67° 30’. 31. —33° 41’. 33. 53° 8. 36. —76° 43’. 37. —18° 26’
39. 53°8. 41. 3/V10. 43. V0.9. 46. 5/3. 47. 0.4V5. 49. V10/10.
61. —4V5. 63. V3/3. bb. 3/2. b7. —8/17. 59. 0.4V5.

Exercises 46. §106.

1. V2, —45° 5, Arctan (3/4); V146, 7 + Arctan (- 11/5); 2, 90°; 2,
0°; 2, 0% 6, 30°; 36, — 60° 4, 90°.

Exercises 47. §108.
3. +3,+3i. b. 1 =2; 1= 2(cos 72° + i sin 72°); z;3 = 2(cos 144° 4
¢ sin 144°); ete. 7. = = V3 (cos n 60° 4 ¢ sin n 60°), n =0, 1, 2, 3, 4, 5,
or, I, Iz, 23, etc., = V3, (V3 +30)/2, (- V'3 + 30)/2, ete.

Exercises 49. §119.
1. ¢, a, 3: 112° 44/, 133° 28, 67° 50’. 3. a, b, c: 4° 3, 44° 19, 44° 29",
5. b, o, B 40°3Y, 122° 387, 50° 16", T. a, b, a: 146° 34, 109° 48", 144° 57",
9. Nosolution. 11.* a, b, p: 32° 3.¢, 138° 17.0/, 120° 46.1". 13. q, B, ¥:
129° 59/, 36° 54/, 59°3’. 16. b, a, 7: 78° 11/, 13° 51/, 129° 42'. 17. b, o, B:
84° 54’, 108° 28', 81° 37". 19.* a, b, a: 28°46.5/, 63° 57.3, 12° 41.7".
21.* q, o, y: 122°17.5/, 132° 15.8/, 118° 53.9".

Exercises 50, §131.

1. a, B,v: S1°39,70° 10/, 64° 47", 8. o, 8,v: 140° 0, 61° 40’, 26° 30'.
6. b, a,y: 117°5,65° 307, 123° 21", T. a, 8, v: §2° 7.0/, 111° 32.8, 92°
28.4'. 9. b, ¢, a: 157° 40/, 33° 20/, 62° 5U'. 11. b, ¢, a: 131° 55.3/, 62°
47.7’, 111° 39.6'. 13. q, b, c: 163> 3¢, 169° 40’, 8° 11.6’. 16. a, b, c:
49° 24, 149° 34.4', 148° 33.5". 1T. a, a, v: 118° 20’, 136° 57’, 29° 40
19. ¢, o, y: 153° 38.7', 42° 37.3', 160° 1.4'; or ¢/, o, v': N0° 5.7', 137°22.7",
50° 18.9°. 21 b, ¢, B: 124° 50.4’, 33° 22/, 83° 25.6". 23. b, ¢, v: H7° 35,
154° 15.5", 151° 15'; or b/, ¢, v': 122° 25/, 64° 2.2', 84° 41.7". 26. ¢, , B:
48° 46.4,121° 28.6/,28° 33.3". 2T. a, B,v: 53°38.8’,118° 15.8"; 112°14.2",
29. b, o, v: 125° 30.9, 34° 59.3’, 33° 11.6'. 81. a, b,v: 23°57.2, 118°
2.2, 102°5.8. 83. a, b, c: 165° 25.3, 14° 34.7’, 168° 47.2". 8b. a, a, 6:
18° 48.7,53° 38.8, 118° 15.8’. 87. b, a, 8: 118°2.2". 27°22.6’, 91° 26.7".
39. a,a,v: 152°43.8/, 153°17.1°, 78° 15.8".

Exercises 51. §133.

1. Latitudes: 43°01’, 31°47’, 25°32’; longitudes: 132°12’, 147°46/,
154°04’; courses: S52°43'W, S43°11'W, S40°08'W. 3. 137°11'W;
788 naut. miles. 6. 6829 naut. miles. 7. 168°38' W; S42°59’' W; 3410
naut. miles.
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Exercises 52. §136.

1. N. Y.-S. F. 2568 statute miles, N. Y.-M. C. 2090 s.m., S. F.-M. C.
1889 s.m.; angles: N. Y. 48° 58, S. F. 55° 48, M. C. 82° 40’; area
2025300 sq. miles. 8.* 7929.1 naut. mi. 6.* 23° 36.3' N, 145° 6.7 W;
S 48° 31.3' W. T7.* 1617.3 naut. mi.,, C at Manila S 35° 13.2’ W, C at
Tokyo S 43° 22.8' W. 9. 1380 n.m., 1436 n.m.

Exercises 54. §142.

1. 40°48’. 3.* 18h. 33 m. 50s.,10h.0m. 21s. 6.* 18h. 33 m. 50s.,
110°16.1,13h. 48 m. 34s. 7. 25°21’. 9. At western elongation: 176° 17,
5h. 50m. 16s.; 175° 32, 5h. 48m. 16s.



Abscissa, 4
Airplane:
air speed of, 70
ground speed of, 70
Altitude of sun, 208
Angle:
circular measure, 32
mil measure, 86
negative, 2
positive, 2
radian measure, 30
Are, circular, 33
Area:
of plane triangle, 130

of spherical triangle, 163, 180

Astronomical triangle, 208
Azimuth:

difference, 90

in Astronomy, 208

of a line, 90
Basic angles, 39
Bearing:

in navigation, 192

in plane sailing, 74

in plane surveying, 73
Celestial equator, 208

poles, 208

sphere, 207
Co-functions, 15
Complex numbers, 153
Coordinates:

Mercator, 202

polar, 151

rectangular, 2

terrestrial, 198
Course, 206

great circle, 192

rhumb line, 204
Coversed sine, 29

INDEX

Declination, 208
Delambre’s Analogies, 180
De Moivre’s Theorem, 155
Departure, 73
Displacement, angular, 34
linear, 34
Distance, in surveying, 72
great circle, 191
rhumb line, 204
Foreces, as vectors, 204
components of, 71
resultant of, 71
Gnuss's Analogies, 180
Great Circle, 163
Greatest Elongation, 209
Haversine:
definition, 29
formulas, 184
Horizon, 208
Hour angle, 208
Hour circle, 208
Hyperbolic functions, 161
Initial line, 2
Inverse functions:
definition of, 42
general value of, 139
graphs of, 140
principal value of, 43, 139
Latitude:
in surveying, 73
terrestrial, 165
Law of Cosines:
plane triangle, 115
spherical triangle, 175
Law of Sines:
plane triangle, 114
spherieal triangle, 174
Law of Tangents, 117
Meridian, 208
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Middle Latitude, 202
Mil, 30, 86
Mollweide’s Equation, 120
Napier:
analogies, 178
rules, 169
Nautical Mile, 190
Ordinate, 4
Parabolic trajectory, 93
Parallax, defined, 91
in Astronomy, 92
Parallelogram law, 68
Polar distance, 208
triangle, 163
Principal angle, 43
Projection of a line segment, 50-64,
65
Quadrant of an angle, 2
Quadrantal angle, 39
triangles, 173
Quadrants, 2
Radian, 30
Radius veetor, 151
Rhumb Line, 199
course, 204
distance, 204
Roots of Unity, 157
Sailing:
composite, 206
great circle, 191, 206
Mercator, 206
middle latitude, 206
parallel, 206
plane, 74
Sector, circular, 33
Segment, circular, 33
Significant digits, 52
Simple Harmonic Motion, 78

INDEX

Speed:
angular, 34
lincar, 34
Spherical triangle, 163
Sun dial, 210
Surveying, plane, 72
Terminal side, 2
Time sight, 209
Trigonometric equation, 49, 146,
148
Trigonometric functions:
approximate values of, 7
definition of, 4
graphs and periodicity of, 18-23
line values of, 8
of acute angles, 10, 11
of complementary angles, 15
signs of, 6
Vectorial angle, 151
Vectors:
angle of, 67
components of, 66
definition of, 66
length of, 67
resultant of, 68
sum of, 67
Velocity, 69
Versed sine, 29
Vertex:
method, 195
of great circle, 195
Waves:
amplitude of, 76
length of, 76
phase of, 76
simple, 76
Zenith, 208
Zenith distance, 208
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THE GREEK ALPHABET

Letters Name Letters Name Letters Name
A, @,  Alpha I, ¢, Tota P, p, Rho

B, 8, Beta K, x, Kappa >, 0, Sigma
Iy, Gamma A, A, Lambda T, 7, Tau

A, 5, Delta M, u, Mu T, v, Upsilon
E, ¢ Iipsilon N,», Nu ¢, ¢, Phi

Z, ¢, Zeta = & Xi X, x, Chi

I, », Eta 0, o, Omicron v, ¢, Psi

0, 0, Theta I, =, Pi Q, w, Omega

Formuras oF PLANE TRIGONOMETRY

Definitions. — In right triangle A BC, whose sides are a, b, ¢

. a b a

sind=- cosd=- tand =5

c ¢ b

c c b

' escAd == secd=5 cotd=-—
a b a

More generally, if z be an angle of any magnitude, as XOP in
figurc 4,

. ordinate abscissa ordinate
SiINZ = —————) COSL = - tansT = —~———
distance distance abseissa
distance distance abscissa

CSCL = ————1 SeC T = ——i— r=-——
ordinate abscissa ordinate

versz =1 — cosz. coversz =1 —sin x.

1 -cosz

haversineof z = havz = jversz = 5

221
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Relations between the functions of an angle. Formulas,
Group A. §19.

. 1 1 cos T
1. sinz=——— 3. tanz = ——- b. cot r = ——-
cse x cot x sin T

sin x 6

1 .
2. cosx =—— 4. tanz = . sin?x 4+ cos?z = 1.
sec x cos

7. 1 4+ tan?z = sec’z. 8. 14 cot?’xr = csc?r.

Rules for expressing any function of any angle in terms of a
function of an acute angle. §21.
Any function of any angle x is numerically equal to the

same function . .. even
: . of z increased or diminished by any mul-
co-function odd

tiple of 90°.

The sign of the result must be determined according to the
quadrant of z.

Functions of + x and — x. §23.

f(+ ) = f(— x), when f = cosine or sccant.
f(+z) = — f(— z), when f = sine, cosecant, tangent, cotangent.

Angles corresponding to a given function. §34.

Let 6, and 6, be the basic angles corresponding to a given value
of a function. Then all angles are 6, + 2n7 and 6, + 2nw, where
n is any integer, positive or negative, or zero. In exceptional
cases there may be only one basic angle.

Formulas, Group B. §69.

9. sin (x +y) = sin £ cos y + cos z sin y.
10. cos (£ +y) = cos z cos y — sin z sin y.
11, sin (x — y) = sin  cos y — cos Z sin y.
12, cos (z — y) = cos & cos ¥ + sin & sin y.
13. tan (z + y) = tanz tany

1 -tanz tany

cotzcoty — 1

14. cot (z +y) = cot z + cot y
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_ tanr —tany
" 1+4+tanztany
cotz coty +1
coty —cotzx

16. tan (z — y)

16. cot (x —y) =

Formulas, Group C. §73.

Double Angle. Half-Angle.
17. sin 2x = 2 sin x cos . 20. sin 3xr = + ‘{1—_—5012
18. cos 2z = cos*r —sin*r, 21 cos 3xr = + 1—+—;0ﬁ
=1 - 2qn’z, 92. tan iz = + [1 - cos z
1+ cosz
=2costz — 1. 1 — cos x
T singx
2 tanx sin
19. tan2z - 1-tan®z “1+cosz

Formulas, Group D. §75.

. . .U+ U —v
23. sin u 4+ sin » = 2 sin g C0S —5—
2

. . u4+v . u—v
24. sin ¥ — sin ¥ = 2 oS —5— SIn .

2 2
wu+v  u-—v
26. COS U + COS ¥ = 2 COS —5— COS —5—+
2 2
LUV . u—
26. COSU — oSV = — 2 8in —5— SIin 5

Solution of right triangles. Solve by means of the definitions
of the trigonometric functions.

Oblique plane triangles. Formulas, Group E.
1. Law of Sines: a:b:c=sinea:sin B :siny §78.
2. Law of Cosines:  a* = b? + ¢® — 2bc cos a. §79.

a—b_tan%(a-ﬁ).
a+b tani(a+B) §81.

3. Law of Tangents:
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Half-angles. §82.

lets=1(a+b+c¢) and r= #(s —a)(s = b)(5 —¢)

S

4. sin }a = ‘/(9 — b)(b . 6. tanla = V/(-" :(;7)_(8&; ¢).
— r
5' COS %a = JS(bbc a)' 7. t:).n %a = S‘—.——(_],
Area. §89.
8. K = }absin v. . 9. K =rs.

Solution of oblique plane triangles.

Case 1. Given two angles and a side. §85.
Use law of sines.

Case II. Given two sides and the included angle. §80.
Use law of tangents, then law of sines

Case ITI. Given two sides and an opposite angle. §87.
Use law of sines. Ambiguous case.

Case IV. Given the three sides. §88.

Use one of the formulas (4), (3), (6), or (7).

ForMurLAs OF SPHERICAL TRIGONOMETRY

Spherical right triangle. §114-§118. — Let «, B, v, be the
angles and a, b, ¢ the sides. Arrange the five parts a, b, co-8,
co-¢, co-e in circular order. These parts are then connected by
Napier’s Rules:
. . fproduct of cosines of opposite parts;
sine of middle part = - .
\product of tangents of adjacent parts.

To solve a spherical right triangle use Napier’s Rules to write
a formula involving the two given parts and a required part.

To solve a quadrantal triangle, solve its polar right triangle.

Spherical oblique triangles. Formulas, Group F.
1. Law of Sines: sina:sinb:sinc =sin «: sin B sin v.
§120.
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2. Law of Cosines: cos a = cos b cos ¢ + sin b sin ¢ cos a.
§120.
3. cos o = — €os 3 ¢0s vy + sin B sin v cos a.
§121.
Half-angles. §122.
S=1a+b4o);tany = fin(s—a)sin(s—b)sin(s—c).
2 sin s
5 sin 1o fin (s =b)sin (s —¢)
) = sin b sin ¢
1 gfsinssin (s — a)
6. €os 3o = sin b sin ¢
1o o (LG b G =)
7. tan 3o = sin s sin (s — @)
tan »
9. 1, — nr
tan a sin (s — a)
Half-sides. §123.
S -1 - cos S )
=3ila+3+7); tan R = J(()\(,\ —a)cos (S = B)cos (S —v)

. — cos \ (()~ (S — a)
14. sin la = :
sin B siny

05 (S — B) cos (N -
15. cos 3a = ‘/ws S =8 cox (8 ),
i sm g =my

1, _ — cos S cos (S = a). )
16. tan za = J('os (S —B) cos (S —7)
17. tan 3a = tan R cos (S — a).

Napier’s analogies. §124.

S 1
20", tan 1(a — b) = :2 ,EZ ~ Z; tan Lc.

cos 3 (a — B)

21 tan }(a +b) = PO (a T 6) tan 3ec.
’ 1 sin 1(a = b) X
22'. tan (o — B) = o i (&TF) cot 3v.

2
23", tan (a + ) = — da—b) cot 3

cos 3(a + D)
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Delambre’s or Gauss’s analogies. §125.
cos 3(a — b) 1

24, sin 3(a +B) = cos Ic oS 37v.
2. sin 3(a - ) = HE=D oo gy
2. cos o+ ) = S D in g,
217. cos 3(a = B) = %ﬁ) sin y.

Case V. Alternative method. Given, b, ¢, «; calculate a, 8,
v. §128.
28. tan m = cos « tan b; tan n = cos « tan c.
29. cos a = cos b scec m cos (¢ — m) = cos ¢ sec n cos (b — n).
30. cot 8 = cot a csc m sin (¢ — m).
31, cot v = cot a csc n sin (b — n).

Haversine formulas. §129.

39 hava=sm (s = b) sin (s = ¢)
) sin b sin ¢
33 hav a = hav a — hav (b —¢)
: sin b sin ¢
34. hav a = hav (b — ¢) + sin b sin ¢ hav a.

Spherical excess. Area. §126.
E = (a+B+7v) — 180°
tan 3a tan 3b siny
1 4+ tan }a tan 3b cosy
tan 1E = V'tan 1s tan (s — a) tan (s — b) tan (s — c).
E (degrees)
720

tan 1E =

Area = X 4wR? = E (radians) X R

Solution of spherical oblique triangle. §§127-9.
I. Given two sides and an opposite angle.

Use law of sines, then Napier’s Analogies. Two solu-
tions possible.
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IIL

IV.
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Given two angles and an opposite side.
As in I.
Given the three sides.
Use formulas for the half-angles.
Given the three angles.
Use formulas for the half-sides.

V. Given two sides and their included angle.
Use Napier’s Analogies, 22" and 23/, then law of sines.
VI. Given two angles and their included side.
Use Napier’s Analogies, 20" and 21/, then law of sines.
Alternative method under Case V. §128.
Haversine method. §129.

Vertex method. §134.
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B EXPLANATION OF THE TABLES
AND THEIR USE

TABLE 1

Common logarithms. Definition. The common logarithn of a
number is the exponent which must be applied to 10 to produce the
given number.

The symbol for the common logarithm of a number = is log n,
which is read :

“ The logarithm of n to the base 10.”
Ezxamples.

102 =100
108 = 1000 .’. common

100 = 2, or logm 100 = 2-
1000 =3, or logo 1000 = 3.

100 =1 logarithm 1=0, or log, 1=0.
101 = 0.1 of 01=-1, or logw 0.1=-1,
102 = 0.01 001 = -2, or loge 001 = -2,

In these equations 10 is called the base of the system of loga-
rithms. Other numbers might be used as bases, but for purposes
of computation the base in common use is 10.

In general, if n = 107,
then the common logarithm of n = z, or logyn= .

228
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Theory of logarithms. So much of the theory of logarithms as
is required in ordinary computation may be summed up in the
following rules:

I. The logarithm of a product equals the sum of the logarithms

of the factors.
logi, m-n = logi,, m 4 logi n.

II. The logarithm of a fraction equals the logarithm of the nu-
merator minus the logarithm of the denominator.

m
log1o i logi, m — logy, n.

III. The logarithm of the pth power of a number equals p times
the logarithm of the nwmnber.

logiy m» = p logy,, m.

Proofs.

I. Given two numbers m and n whose common logarithms
are z and y respectively.
That is logwm =2 and loggyn=y.
Then by definition of logarithms,

m =10 and n = 10v.

Hence m-n = 107-10v = 10*+v.

Therefore logiem-n = a + y = logiy m + logy n.

II. Procceding as in I except that we divide m by n, we have

m 107

Mo 10,

n 10v

Therefore logm%z =2 — y = logiwm — logy n.

III. To prove that log, m? = p logi, m, let z be the common
logarithm of m.

That is logio m = z.

Then m = 10~

Raising to pth power: m? = (10%)7 = 10¢=,

Therefore, by definition of a logarithm,
logi m? = pz = p logio m.
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This proof holds whether p is an integer or not. In applying
the formula roots are to be written as fractional exponents, thus:

3 2
logi, Vm? = logyy mi = % logy m.

Exercises. Prove:

1. logi mnr = logi m + logio n + log)o .

mn
. loge gk logio m + logw n — logy r — logyo 8.

2

3. logic mPn? = p logio m + q logyo n.
mp

4. logo =P logie m — g logie n.

6. logie Vm*ns = § logio m + $ logie n.

6. logio by % logio m + % logyy n— & logio .

(mn)?
7. lng W,—sa =3 loglo m + 3 ]Ogm n— % 10g1() r— % lOgm S.

The proofs of rules I, II, IIT are also valid when the base 10 is
replaced by any other positive number. In what follows we deal
exclusively with the base 10, and hence we shall usually omit the
subseript 10, so that logio m will be written merely log m.

Numerous applications of these rules will be found in the
explanation of the use of Table I.

Table of common logarithms. If we ask the question —
What power of 10 will give 302? — we can see at once that the
answer must lie between 2 and 3, because 302 lies between 102
and 103. Thatis, 302= 10>+, and log, 302= 2.+.

The necessary decimal can he supplied by reference to a table
of logarithms, such as Table L.

The function of such a table is to furnish the decimal part of
the common logarithm of any number. The tables in this text
give these decimals to four places. For more accurate compu-
tations 5-place, 6-place, and 7-place tables arc in common use.
The integral part of the logarithm is to be supplied by the com-
puter.

Definitions. The integral part of a logarithm s called the charac-
teristic, and the decimal part the mantissa.
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Rules for characteristics.

(a) When the number has n significant figures to the left of
the decimal point, the characteristic of its logarithm is n — 1.

(b) When the number is a decimal with n ciphers between the
decimal point and the first digit which is not zcro, the charac-
teristic of its logarithm is 9 — n, and — 10 must be supplied to
complete the logarithm.

The reason for these rules will become evident when we con-
sider an example.

Ezample. Let us find log 302. In the table find 30 in the
left-hand column and run across the page horizontally to the
column headed 2. There we find that mantissa of log 302 =
.4800. Now 302 lies between 100 and 1000, i.c. between 10* and
103, Ilenee, by the definition of a logarithm, log 302 must lie
between 2 and 3. Therefore the characteristic is 2, and

log 302 = 2.4800.
This is of course not the exact logarithm of 302, but only its
value to four decimal places.

Writing the last equation in exponential form, we have

302 = 102480,
Multiplying both sides by 10,

3020 = 10 x 10240 = 10340 Hence, log 3020 = 3.4800.
Multiplying again by 10,

30200 = 10 x 103480 = 10440 Hence, log 30200 = 4.4800.

Therefore, where a number is multiplied by 10, the character-

istic of its logarithm is increased by 1; the mantissa remains
unchanged.

Dividing the above equation suceessively by 10, we obtain
30.2 = 10240 - 10 = 10140
3.02 = 1014800 . 10 = 100.4800,
302 = 100480 . 10 = 1004800—-1,
0302 = 10048001 .. 10 = 100 4802
00302 = 1004300-2 + 10 = 10048003,
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and so on. As logarithmic equations these are:

log 30.2 = 1.4800,
log 3.02 = 0.4800,
log .302 = 0.4800 — 1 = 9.4800 — 10,
log .0302 = 0.4800 — 2 = 8.4800 — 10,
log .00302 = 0.4800 — 3 = 7.4800 — 10,
and so on. The second form in the last three equations is used
for convenience in computations; it is in accordance with rule
(b).
To discuss rules (a) and (b) more gencrally, let m be any
number. Then by the definition of a logarithm, when

m lies between log m lies between
1) - L and 10, 0 and 1,
(2) 10 and 100, 1 and 2,
3) 100 and 1000, 2 and 3,
4) 1000 and 10000, 3 and 4,

and so on. Thercfore, when m has

(1) 1 digit to the left of the point, logm = 0.+ - --

(2) 2 digits to the left of the point, log m = 1.+ ---

(3) 3 digits to the left of the point, log m = 2.+ - --

(4) 4 digits to the left of the point, log m = 3.+ - .-
and so on. Hence rule (a).

In the case of decimal numbers,

when m lies between log m lics between

(1) 1 and 0.1, 0and - 1,
(2) 0.1 and 0.01, —1land - 2,
3) 0.01 and 0.001, —2and - 3,
4) 0.001 and 0.0001, — 3 and - 4,

and so on. That is, when m is a decimal number in which
(1) no cipher follows the point, log m = 9.4+ - - - — 10;
(2) 1 cipher follows the point, logm= 8.+ --- - 10;
(3) 2 ciphers follow the point, logm= 7.+ --- — 10;
(4) 3 ciphers follow the point, log m= 6.+ --- — 10;

and so on. Hence rule (b).
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Interpolation. — Ezample. Find log 3024,
From the table,
mantissa of log 302 = .4800;
mantissa of log 303 = .4814;
Assuming that the increase in the logarithm is proportional
to the increasce in the number, we have
mantissa of log 3024 = .4800 + .4 x .0014 = .4806.
The result is here given to the nearest unit in the fourth decimal
place, .4 x .0014 being taken cqual to .0006 in place of .00056.

difference = .0014.

Proportional parts. For convenience in interpolation, the
tabular differences greater than 20 are subdivided into tenths
and tabulated under the heading “ Prop. Parts.”  When the
difference is less than 20, the interpolation is best made men-
tally. If it is desired, the table of proportional parts may be
used when d < 20 by taking half the proportional part corre-
sponding to double the difference.

Ezxamples.

1. log 164.3 = ?
Mantissa of log 164 = .2148; d = 27,
Correction for .3 = 8
log 164.3 = 2.2156

2.  log (1643)1 =7
log (164.3)! = % log 164.3,

- 3(2.2156) = 1.4771.

]

3. log. 01047 = ?
Mantissa of log 104 = .0170; d = 42,
Correction for .7 = 29
log .01047 = 8.0199 - 10

4. log V(01047 =?
vV 01047% = (.01047)4,
log V(.01047)* = % log (0.01047),
=% (8.0199 - 10).
4(8.0199 - 10) = 32.0796 — 40 = 22.0796 - 30.
4(22.0796 - 30) = 7.3599 - 10.

Note. When a logarithm which is followed by — 16 is to be divided by a
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number, add and subtract a multiple of ten so that the quotient will come
out in a form followed by — 10. Thus:

1(8.2448 — 10) = 4(38.2448 — 40) = 9.5612 — 10.

Anti-logarithm. The number whose logarithm is z is called the
anti-logarithm of x.
Thus, if x = log m, then m = anti-log z.

Given a logarithm, to obtain the corresponding mumber (anti-
logarithm).

Examples.

1. log m = 0.4806. m =?

The given logarithm lies between the tabular logarithms .4800 and
4814, to which correspond the numbers 302 and 303 respectively.
Thus we have

Number. Mantissa of log.
302 .4800} 6 )
m 4806/~ 14
303 4814 )

Hence, without regard to the decimal point, m = 302 + % = 3024+.
Pointing off properly,
m = anti-log 0.4806 = 3.024+.
2. logm =7.0959 - 10. m=2?
mantissa of log 124 - .0934 } 9 51
mantissa of log m = .0959 35
mantissa of log 125 = .0969 J
Hence m has the sequence of figures
124 + 3% = 1247+,
Pointing off properly,
m = anti-log (7.0959 — 10) = .001247+.

Note. The value of the quotient § 2 may be obtained from the column of
Prop. Parts by finding the number of tenths of 35 required to equal 25. We
have from this column,

.7 x 35 =24.5 and .8 x 35 = 28.0.
Hence we see that to make 25 we need a little more than .7 x 35. A close
approximation would be .71+, making m = .0012471+.

When the tabular difference is large, it is possible to obtain correctly
more than four significant figures of a number when its four-place logarithm
is given.

Cologarithm. The cologarithm of a number is the logarithm of
the reciprocal of the number.
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Thus: colog m = log% =log 1l — logm = — log m.

In practice we usually write it in the form
cologm = — logm = (10 — log m) — 10.

Rule. To form the cologarithm of a number, subtract its
logarithm from 10 and write — 10 after the result.

Examples.
1. colog 302 = (10 - log 302) - 10
= (10 - 2.4800) - 10 = 7.5200 - 10.

2. colog .003024 = (10 — log .003024) - 10
= (10 - [7.4806 - 10]) - 10 = 2.5194.

Use of the cologarithm.
302 X 415
541 X 0828
Let m be the value of the given fraction. Then without the use of
cologarithms the calculation is as follows.
log m = log 302 + log .415 — log 541 — log .0828.

Example. Calculate the value of —

log 302 = 2.4800 log 541 = 2.7332
log 415 = 9.6180 - 10 log 0828 = 8.9180 — 180 - 10
12.0980 - 10 11.6512 - 10
11.6512 - 10
log m = 0.4468, m = 2.7975.
To use cologarithms, we write
1 1
m =302 X .415 X ,41Xm‘

log m = log 302 + log .415 + colog 541 + colog .0828
log 302 = 2.4800
log 415 = 9.6180 - 10
colog 541 = 7.2668 — 10
colog .0828 = 1.0820
log m = 20.4468 — 20
m = 2.7975.

As a last example, we calculate the value of the quantity,

(00812)F X (- 471.2)°
(= 522.3) x (01242)1

m =

To take account of the signs, which must be done independ-
ently of the logarithmic calculation, we note that the cube of a
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negative quantity occurs on both sides of the fraction; hence the
sign of the fraction is plus.
We now write

log m = i[log (.00812)% + log (471.2)% + colog (522.3)3
+ colog (.01242)1].
log .00812 = 7.9096 — 10 log (.00812)3 = 8.6064 — 10

log 471.2 = 2.6732 log (471.2)% = 8.0196
log 522.3 = 2.7179 log (522.3)% = 8.1537
log .01242 = 8.0941 — 10 log (.01242)% = 8.5706 — 10
Hence log (.00812)3 = 8.6064 — 10
log (471.2)* = 8.0196
colog (522.3)* = 1.8463 — 10
colog (01242)% = 1.4294

2[19.9017 = 20
log m = 9.9508 — 10

m = .8929.
Exercises. Verify the following equations:
1. log 7 = 0.8451. 17. colog .0448 = 1.3487.
2. log 253 = 2.4031. 18. colog V5475 = 8.1308 — 10.
3. log 253.5 = 2.4040. 19. colog (.0003684)} = 12.0180.
4. log -025§ = 3-403(1)3" 10-1 20. antilog 1.2222 = 16.68.
:' ;"g 60504%1033;8:'548 610" 91, antilog 3.6675 = 4650.
. log =3. . . .
7. log 4.007 = 0.6028. 22. ant.xlog 0.4000 = 2.5118.
8. log .9995 = 9.9998 — 10. 23. antilog (8.3250 - 10) = .021135.
9. log V786 = 1.4421. 24. antilog(6.9525 - 10) = .0008964.
10. log =y = 7.1158 — 10. 26. (-748)" - 4185.
11. log (.0022) = 2.0272 — 10. 26. V- .0822 = - .4348.
12. log V10022 = 0.1141 — 10,  27- (- 6.213) = 2.076.
18. log (.01401) = 85171 —10. g (1412 .00
14. log (.0003684)% = 7.9820 — 20. V=7(.00475)
16. colog 200 = 7.6990 — 10.
16. colog .7 = 0.1549. 29. 7239y = 05761
TABLE 1II.

This table gives the logarithms of the sine, cosine, tangent and
cotangent of angles from 0° to 90°, at intervals of 10’.
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When the angle is taken from the left-hand colum of the page,
the name of the function must be sought at the top of the page;
when the angle is taken from the right-hand column of the page,
the name of the function must be sought at the foot of the page.

When the function is numerically less than 1, — 10 must be
written after its tabular logarithm. This is the case with the
sines and cosines of all angles between 0° and 90°, with tangents
of angles between 0° and 45°, and with cotangents between 45°
and 90°.

I'or convenience in interpolation the differences of the tabular
logarithms are given, and these differences are subdivided into
tenths in the column of proportional parts. ence this column
contains the corrections to the tabular logarithms for each min-
ute of angle from 1’ to 9’ inclusive. These corrections are to be
added when the logarithm increases with the angle, and they
are to be subtracted when the logarithm decrcases as the angle
increases.

When the logarithm of a function of an angle greater than 90°
is required, change to the equivalent function of an angle less
than 90° (§21). Algebraic signs must be adjusted independently
of the logarithmic caleulation, as in the use of Table 1.

Seconds of are must be reduced to the equivalent fractions of a
minute of are.

To obtain log see x, take from the table colog cos z; for log
ese &x use colog sin x.

Examples.
1, log sin 20° 13" = ?
log sin 20° 10’ = 9.5375; d =34,
d for 3’ (Prop. Parts) = 10.2

log sin 20° 13’ = 9.5385 - 10.

2. log cos 20° 13’ = ?
log cos 20° 10’ = 9.9725; d=4.
dfor3' =4% .3 = 1.2
log cos 20° 13’ = 9.9724 — 10.
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3. logtan29°47'=?
log tan 29° 40’ = 9.7556; d = 29.
d for 7' (Prop. Parts) = 20.3
log tan 29° 47’ = 9.7576 - 10

The same result may also be obtained by starting with log tan 29° 50,
thus:

log tan 29° 50’ = 9.7585; d = 29.
d for 3’ = 8.7
log tan 29° 47’ = 9.7576 - 10.

As a rule, in interpolating start from the nearest tabular number,

4, log cot 29° 47’ = ?
log cot 29° 50’ = 0.2415; d =29.
d for 3’ = 8.7
log cot 29° 47’ = 0.2424.

b. log sin 58° 44’ = ?
log sin 58° 40’ = 9.9315; d=8.
d for 4’ = 3.2
log sin 58° 44’ = 9.9318 - 10.

6. log tan 67°23.5" = ?
log tan 67° 20’ = 0.3792; d = 36.
dfor3.5 =108+ 1.8 = 12.6
log tan 67° 23.5' = 0.3805.

Here we obtain d for 3.5’ from d for 3’ + d for 0.5’. Note that d for
0.5 is simply one-tenth of d for 5'.

7. log cos 105° 51.6” = ?
cos 105° 51.6” = — sin 15° 51.6".
Neglecting the algebraic sign we have
log sin 15° 50’ = 9.4359: d =44,

dfor16’= 70
log sin 15° 51.6” = 9.4366 — 10 = log cos 105° 51.6".
8. log tan 250° 34.3' = ?

tan 250° 34.3’ = tan 70° 34.3".
log tan 70° 30’ =.0.4509; d = 40.
- dfor4.3 = 17.2
log tan 70° 34.3’ = 0.4526 = log tan 250° 34.3".

Angles near 0° or near 90°.

When an angle, z, lies near 0°, sin z, tan r, and cot z vary too
rapidly with z to permit of accurate interpolation of their loga-
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rithms from the table. The same is true of cos z, tan z, and cot
x, when z lics ncar 90°.  We will show how accurate values of
these logarithms may be obtained.

Let $=log ™" and T = log tanz,
z being expressed in minutes of are.  We indicate this by z'.
Then log sin = log 2’ 4 S,
and log tanz = log 2’ + 7.

When z is small the quantitics S and T vary quite slowly with
z. The values of S and 7' are given in the last column of the
first page of Table 1I, x ranging from 0° to 5°; — 10 is to be
added to the tabular numbers there given.

To get log sin z, reduce x to minutes of are and take log 2’
from Table I; to this logarithm add S.

To get log tan x, add T to log z’.

To get log cot z, first get log tan x and form the cologarithm of
the result.

For, log cot x = colog tan z.

To obtain log cos z, log tan x or log cot x, when z lies between
85° and 90°, calculate the co-function of the complementary
angle by the method given above.

To find the angle from log sin x, log tan z or log cot z, when z
lies near 0°, we use the relations

log 2’ = log sin ¢ — S;
logx’=logtanx — T,
logz’'= —logcotz — T.

The necessary values of S and T can be obtained after finding
an approximate value of x from Table II.

To find z from log cos z, log tan z, or log cot z, when z lies near
90°, replace

logcosz by logsin (90° — 2);

log tan z by log cot (90° — z);

log cot z by log tan (90° — ).
Then 90° — z can be obtained by the method given above for
angles near 0°. Hence z is determined.
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Examples.
1. Find log sin z, log tan z and log cot £ when z = 1° 22’ 12",
z=1°22 127 = 82.2". log z’ = log 82.2 = 1.9149.
log z = 1.9149 log z = 1.9149
S =6.4637 - 10 T = 6.4638 - 10

log sin z = 8.3786 — 10  log tan x = 8.3787 - 10
log cot x = colog tan z = 1.6213.

2. Tind log cos z, log tan = and log cot x when z= 89° 5’ 50",

Let y=90° —xz=>54" 10" = 54.17".
Then log cos z, log tan z, log cot = are equal respectively to log sin y,
log cot ¥, log tan y, which may be found as in example 1.

3. log sin r = 8.2142; z="7
From Table II, x = 50’ 4+; hence S = 6.4637 - 10.
log sin x = 8.2142 - 10
S =6.4637 - 10
log ' = 1.7505;  z = 56.30" = 56’ 18",
4, log tan z = 8.0804 — 10; x=7
From Table 11, z = 40’ +; hence T = 6.4638
log tan = = 8.0804 - 10

T = 6.4638 —- 10
log 2’ = 1.6166; z = 41306’ = 41’ 21.6".
b. log cot x = 8.6276 — 10; z="7?
Let y=90° - z.
Then log tan y = log cot x = 8.6276 - 10.

From Table II, y = 2° 20’ +; hence T = 6.4640.
log tan y = 8.6276 — 10
T = 6.4640 - 10
log ¥’ = 2.1636; y = 145.73" = 2° 25’ 44"
Hence z=90° -y =87°34' 16".

Let the student obtain the results required in the last five
examples by direct interpolation from Table II.

Ezercises. Verify the following equations:
1. log sin 20° 40’ = 9.5477 — 10. 7. log tan 63° 27’ = 0.3013.

2. log cos 66° 30’ = 9.6007 — 10. 8. log sin 81° 29" = 9.9952.

8. log tan 29° 35’ = 9.7541 — 10. 9. log sin 81° 31’ = 9.9952.

4. log cot 37° 25’ = 0.1163. 10. log cos 81° 29’ = 9.1706 — 10.
6. log sec 55° 50’ = 0.2506. 11. log cos 81° 31’ = 9.1689 - 10.
6.

log csc 44° 50’ = 0.1518. 12. log cot 9° 6’ = 0.7954.
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13. log sin 152° 27’ = 9.6651 — 10. 18. log cot 0° 10’ 22" = 2.5206.
14. log sin 2° 10’ 10" = 8.5781 - 10. 17. log cos 89° 28’ 44’ = 7.9588 — 10.
16. log tan 1° 34’ 20" = 8.4385 — 10. 18. log tan 88° 46’ 14” = 1.6683.
19. log sin z = 9.7926; = = 38° 20'.

20. log sin z = 9.3548; z = 13° 5.

21. log sin x = 9.8867; x = 50° 23'.

22. log cos z = 9.6030; z = 66° 22,

23. log tan x = 0.6278; z = 77° 44.5".

24. log cot z = 0.0906; x = 39° 4.

26. log cot r = 0.6648; z = 12° 12.5",

26. log sce r = 0.1374; z = 43° 13",

27. log csc x = 0.2890; z = 30° 56'.

28. log =ec z = 0.6680; z = 77° 35.8".

29. log sin x = 8.3698; z = 1° 20’ 34”.

30. log tan r = 8.7659; z = 3° 20’ 18".

31. log cot z = 1.2952; r = 2° 54 3".

32. log cos z = 8.5387; z = 88° 1’ 8"

33. log cot z = 7.9485; x = 89° 20’ 28",

34. log csc xr = 2.3549; z =0° 15" 11",

36. log sec x = 1.5102; z = 88° 13’ 48",

TABLE III

Thix table gives the numerical values of the six trigonometric
funetions of angles from 0° to 90° intervals at of 10°. The func-
tions of intermediate angles are to be obtained by interpolation.

By using the tables inversely, an angle may be found, usually
to the nearest minute, when a function of the angle is known to
four decimal places.

TABLE IV

A 4-place table of natural and logarithmic haversines at inter-
vals of 10" from 0° to 180°.

TABLE V

This is a conversion table for changing from sexagesimal to
radian measure, and conversely. The entries are given to five
decimal places in radians, corresponding nearly to 2” in sexa-
gesimal measure.
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Examples.
1. Express 200° 44’ 36" in radian measure.
200° = 3 X 60° 4 20°
3 X 60° =3 X 1.04720 = 3.14160 radians.

20° = 0.34907
44’ = €.01280
36" = 0.00017
200° 44’ 36" = 3.50364 radians.

2. Express 3.50364 radians in sexagesimal measure.
3.0 radians = 171° 53’ 14"

0.5 = 28°38 52"
0.003 ‘o= 10" 19~
0.0006 ‘o= 2 47
0.00004 “ = 8"

3.50364 radians = 200° 44’ 37"

TABLE VI

This table contains the values of a number of mathematical
constants, generally to fifteen places of decimals.

TABLE VII

This table gives the values of the natural or Naperian loga-
rithm of z, and of the ascending and decending exponential
functions ¢ and e%, from z= 0 to = 5 at intervals of 0.05.
As a rule the tabular entries are given to three decimal places.

TABLE VIII

This table gives the values of n2, n%, V'n, and V/n, for values of
n from 1 to 100.

The dircct use of the table requires no explanation. As an
example of its inverse use we find the approximate value of
v/320. We have

(6.8)* = 314.432 (n= 68),
(6.9)* = 328.509 (n= 69).
Hence, interpolating linearly,

(6.840)* = 320 approx., or V320 = 6.840+.



TABLES



L.

Logarithms of Numbers

No.] O 1) 2 3 4 b 6 7 8 9 Prop. Parts
10 10000 |0043 [0086 [0128 [0170 [0212 [0253 [0294 0334 [0374 43 | 42
11 [o414 [0453 [0492 0531 {0560 Jo607 [0645 [06s2 [0710 [o755] 3| &3 | 22
12 107920828 |0864 [0899 {0934 {0969 {1004 |1038 |1072 1106 3| 129 | 12'8
13 |1139 |1173 1206 |1239 [1271 1303 (1335 1367 |1399 1430 3| 172|108
14 (1461 (1492|1523 |1553 (1584 (1614 |1644 (1673 (1703 [1732] $ |38 |32
15 |1761 (1790 |1818 |1847 {1875 |1903 {1931 1959 {1987 |2014| & | 314 | 338
16 |2041 |2068 |2095 (2122 (2148 [2175 {2201 (2227 [2253 (2279 9 | 38.7 | 37.8
17 |2304 |2330 |2355 [2380 |2405 |2430 |2455 |2480 [2504 [2529 4

18 2553 2577 (2601 |2625 |2648 [2672 |2695 |2718 (2742|2765 ) | | 35 ;1?,
19 |2788 |2810 |2833 |2856 |2878 [2900 |2923 [2945 |2067 [2989] 3| 82| 80
20 {3010 [3032 (3054 [3075 [3096 [3118 3139 [3160 [3181 [3201| 3 |12:3 (129
21 [3222 |3243 |3263 3284 |3304 [3324 |3345 (3365 |3385 [3404 | 5|39 300
22 13424 |3444 3464 |3483 |3502 3522 [3541 |3560 |3579 [3598 | 7| 287 | 280
23 3617|3636 (3655|3674 3602 [3711 |3729 |3747 3766 3784 | 8| 2.8 32.0
24 3802 {3820 (3838 {3856 {3874 [3592 3909 [3927 (3945 (3962 |—|——

25 [3979 3997 {4014 (4031 {4048 |4065 4082 (4099 (4116 {4133 39 | 38
26 [4150 14166 4183 4200 4216 [4232 |4249 |4265 |4281 14208 | 1] 39| 8.8
27 |4314 |4330 (4346 (4362 |4378 |4393 |4409 |4425 |4440 4456 3| 117 | 114
28 [4472 |4487 14502 {4518 14533 |4548 |4504 4579 |4504 |4600 | 3 | 108 | 15.2
29 14624 [4639 |4654 [4669 |4683 |4698 |4713 (4728 |4742 4757 | o | 232 | 298
30 [4771 4786|4800 [4814 |4829 [4843 [4857 [4871 |4886 4000 3|57 3 (35S
31 |4914 |4928 |4942 |4955 [4960 [4983 |4007 |5011 |5024 |5038 | | 351 | 342
32 |5051 {5065 {5079 (5092 |5105 |5119 |5132 |5145 |5159 |5172

33 [5185 (5198 (5211 (5224 5237 |5250 5263 5276 5289 5302 | ‘377 ?g
34 [5315 5328 |5340 |5353 |5366 |5378 5301 |5403 |5416 5428 | 2| 74| 7.2
35 [5441 |5453|5465 |5478 5490 [5502 (5514 [5527 (5539 (5551 3| 113|198
36 |5563 |5575 |3587 [5599 |5611 |5623 |5635 |5647 |5658 |5670 5|13 ézfﬁo
a7 |5682 [5604 5705 |5717 |5720 [5740 5752 5763 [5775 5786 | 7| 2575 | 559
38 [5798 |5809 5821 |5832 |5843 [5855 |5866 (5877 5888 (5809 | 8 | 20.0 | 28.8
39 {5911 |5922 |5933 [5044 [5955 {5966 |5977 (5988 [5999 [6010 |__° [ 333 {324
40 |6021 |6031 |6042 6053 |6064 |6075 |6085 16096 |6107 [6117 35 | 34
41 [6128 (6138|6149 (6160 6170 [6180 [6191 (6201 (6212 [6222| §| 33| 24
42 6232 |6243 |6253 |6263 |6274 {6284 |6294 16304 (6314 [6325| 3| 1075 | 102
43 [6335 (6345 (6355 6365 [6375 [6385 6395 6405|6415 |6425 | 4 | 15.0 | 13.8
44 |6435 |6444 |6454 [6464 |6474 |3484 (6493 |6503 |6513 6522 | 6| 2100 | 20.4
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II. Logarithms of Trigonometric Functions
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II. Logarithms of Trigonometric Functions
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JI. Logarithms of Trigonometric Functions
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II.

Logarithms of Trigonometric Functions

x {log sin| d |log cos/ d {logtan] d [log cot Prop, Parts
307|9.5828 9.9656] . |9.6172 0.3828] 30’
ao'| sssel o1 1oest) B | leoosl 35 \rarl 207 |4 3&1 35y 3%
50°) .5889) 3o | -9646) ¢ | .6243) o | .3757) 107 2|72 7.0 6.8
23° 0(9.5919 9.9640| . |9.6279 0.3721/67° 0’ | 4 |14.4] 14.0| 136
29 5 35
10" 5048 g0 | .9635| 2| .6314| 33| .3686| 50’ | § -0 1781 170
20| 5978 5o | -9629| 5 | .6348] 5. | .3652) 407 |7 252 2415 238
30| .6007] g | -0624 o | 6383 o, | .3617] 807 |§ 2% 1Y &E
40’ 6036 50 | .9618| o | .6417) 5| .3583) 207
50| .6065| 5g | (9613 g | .6452] 5 | .3548] 107
24° 09.6093] ,¢ (9.9607| . [9.6486 5, 10.3514/66° O | _|__| |
10| .6121]  §g | 9602 o | .65201 oo | .3480| 507 33| 32| 31
20| .6149] 5o | .9596| ¢ | 6553 gy | .3447) 40" | 3|33 24 33
30°| .6177 .9590 .6587 .3413] 307 399 9.6 9.3
10| (6205 2% | lossa) 81 leeool 33 [ 330 207 |5 i 150 153
50'f .6232) 57 | .9579| g | .6654| 33 | .3346] 10 | 6 119.8) 19.21 18.8
26° 0/9.6259| oo 19.9573) o 19.6687| 5, 0.3313166° 07 |8 26.4 25.6| 24.8
10’ .6286| 5o | .9567| o | 67201 55 | .3280f 507 9 129.7) 28.81 27.9
20| .6313| g7 | L9561 ¢ | .6752] 55| .3248 407
301 63401 o | 9555 o | 6785 g | .3215 307
40’ .6366| oo | .9540| o | 68170 53| 3183 20 35|29 | 28
50| 6302 o¢ | .9543| ¢ | .6850] 55 | .31500 10" |y |50l 29| 28
26 0'9.6418 . 10.9537) , lo.68s2| ,, [0.311864° 0/ | 5|0 §7 34
10 .6444] 50| L9530 ¢ | 6914 35 | .3086] 507 | 4 /120 116} 1.2
20’} .6470 o5 | -9524| g | 6946 ] | 3054 40’ A 1318}3'3 }g-g
30'| .6495 .9518 .6977 .3023| 307 | 7[21.0] 203 19.6
40’] 6521 gg ~9512 ‘7‘ -7009 gf 20911 207 | § 230 3231 %4
50| .6546| 53 | .9505| ¢ | .7040] 34 | .2000] 107
27° 0'9.6570 25 9.9499 7 (9.7072] 5, 0.2928/63° 0
10').65951 52| .9492) o | L7103 5y | .2897) 507 |\ | |
20| .6620( 5y | 9486 5 [ .7134] 3 | .2866 40’ . 2.;77 2266 §55
30 .6644) ,, | .9479) o | 7165 4, | -2835] 307 |2 5.4 5.2 5.0
40° 6668 o, | 0473 5 | 7196 5 | 2804 207 | 3|81 A5 O3
50’ .6692 o4 | 9466 7 | .7226] 2774 10’ | 5 {13'5| 13.0] 125
28° 0'19.6716/ ,, 9.0450 o l9.72571 40 0.2743l62° 0 | 9185 i3 19
10°) 6740 G| .9453; 5 | 7287 5| .2713) 507 | 8 216 208 200
20" 67631 gy | .9446| ;7 | .7317 3‘1’ .2683| 407 | 9 [24.3) 23.4) 22.5
30"| .6787 .9439 .7348 .2652| 80’
, 23 7 30
407 .6810] oo | 9432} 4 | .7378| 3o | .26221 20/
50| .6833] 5o | 9425 7 | .7408| 39| .2692) 10’ |~igq| 93| @
29° 079.6856 9.9418| - 9.7438 0.2562(61° 0’ [1]2.4] 2.3 2.2
1076878 22 Voarr| 7 |"l7ae7| 20|23 s0r |3|%8 &0 68
20 .6901) 55 | .9404] 7 | .7497) 5 | .2503] 40’ 4 lgis 32 83
30| 6923 0307] ., | 7526 2474] 307 |6 149 13:8] 132
, 23 7 30
40°.6946)  Go | .9390| 7 | .7556| g | 2444 20’ | T |i6.8 101 154
507 .6968) o5 | .9383| g | .7585| 99 | -2415| 10" | g oi'6| 20.7] 19.8
30° 0°(9.6990 9.9375 {9.7614 0.2386/60° 0’
log cos)] d |log sin| d logcot| 4 |[logtan] x Prop, Parts -
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II.

Logarithms of Trigonometric Functions

x |logsinj d |logcos| d [logtan|] d |log cot Prop. Parts
30° 0(9.6990| 22 l9.9375 7 |o.7614| 30 0.2386(60° 0’ |, 30 29 | 28
10| .7012| 21 | .9368] 7 | .7644| 29 | .2356| 50’ |2 |60 58|56
20| .7033| 22 | .9361 8 | .7673| 28 | .2327) 40’ |3|9.0) 8.7 8.4
30°| .7055| 21 | .9353] 7 | .7701| 29 | .2299| 30’ |5 |15.0 14.5 140
40’ .7076| 21 | .9346| 8 | .7730| 29 | .2270] 207 | § |}8-0) 174 1168
50’f .7097| 21 | .9338] 7| .7759| 29 | .2241 10° | 8 |21.0] 23.2 (2204
9 9
31° olo.7118l 21 [9.9331) 8 [0.7788| 28 |[0.2212[69° o’ | ° |70 1 52
10| .7139; 21 | .9323| 8 | .7816| 29 | .2184] 50’
20’ .7160] 21 | .9315| 7| .7845 28 ! .2155| 40’
30’ .7181] 20 ) .9308| 8| .7873] 20 | .2te7} 80" || __|___|___
40| .7201| 21 | .9300[ 8 | .7902| 28 | .2098 20’ 7126 | 22
50'| .7222| 20 | .9292) 8| .7930] 28 | .2070, 10" |}|%7) 25)%2
32° 0'/9.7242 20 [0.9284| 8 [9.7958) 28 10.2042/68° 0’ | 3|51 7.8 8.0
10°| .7262] 20 | .9276] 8 | .7986] 28 | .2014] 50" |5 |13'5 13.0 110
207 .7282) 20 | .9268 8| .8014 28 | 1986 40’ | ¢ I8 15.0 |32
30| .7302| 20 | .9260| 8 | .8042] 28 | .1058| 307 |8 (216 208 |17 6
40’ .7322| 20 | .9252] 8 | .8070| 27 | .1930| 20’ |9 |43 23.4 19.8
50°) .7342| 19 | .9244| 8 | .8097| 28 | .1903] 10’
33° 09.7361] 19 [9.9236] 8 [9.8125 28 [0.187567° 0O’
10° .7380| 20 | .9228| 9 | .8153| 27 | .1847) 50’ |~|37| 5o | {9
20°| 7400, 19 | .9219| 8 | .8180| 28 | .1820] 40’ {1 [%] B0l 19
30 .7419] 19 | 9211 8| .s208 27 | .1792] 30’ |3|&% &03%
40°f .7438| 19 | .9203| 9 | .8235 28 | .1765| 20" |4 | 8.4 80| 7.8
50°| .7457) 19 | .9194] 8 | .8263] 27 | .1737] 10" | 3 /9.8 19095
34° 09.7476 18 19.9186 9 (9.8290( 27 10.1710/66° 0’ | 7 (14T} 14.0 1133
10°{ .7494] 19 .9177) 8 | .8317| 27 .1683 50" | 9l18.9| 18.0 |17.1
20'( .7513) 18 | .9169| O | .8344] 27 | .1656| 40’
30°| .7531] 19 | .9160| 9 | .8371] 27 | .1629| 30’
40°) .7550) 18 | .9151 9 | .8398| 27 | .1602| 20" |_| _ L
50' .7568] 18 | .0142| 8 | .8425 27 | .1575 10" | }88 A llg
36° 09.7586] 18 [9.9134] 9 [0.8452| 27 [0.1548(66° O’ |2 |36 34|32
10°| .7604| 18 | .9125| 9 | .8479| 27 | .1521| 50’ | 3|54 1148
20’ .7622 18 | .9116| 9 [ .8506| 27 | .1494| 40" | 5|90 85|80
307 .7640] 17 | .0107] 9| .8533] 26 | .1467] 30’ |S|I05 102198
40| .7657| 18 .9098{ 9 | .8559 27 . 1441 20’ | 8 [14.4] 13.0 [12.8
50’) .7675] 17 | .9089] 9 | .8586] 27 | .1414] 107 |9 [16.2/15.3 |l4.4
36° 0[9.7692] 18 [9.9080| 10 [9.8613] 26 [0.1387(64° 0
10| .7710] 17 | .9070| "9 | .8639] 27 | .1361] 50’
20°| .7727) 17 | .9061| 9 | .8666| 26 | .1334| 40’ |—|—g|~ g |"T
30| .7744| 17 | .9052 10 | .8692 26 | .1308| 30 || o 8| 7
40°) .7761 17 | .9042| 9 | .8718| 27 | .1282] 20’ |5{2% 2321
50°| .7778| 17 | .9033| 10 | .8745| 26 | .1255] 10’ 4130 3228
87° 0[9.7795| 16 {9.9023| 9 9.8771| 26 [0.122963° O’ |6 |54| 48|42
10 .7811) 17 | .9014) 10 | .8797| 27 | .1203| 50’ | 7|83 5649
20’] .7828| 16 L9004 9 | .8824] 26 L1176 40’ 9(81 72163
30"| .7844 .8995 .8850 .1150[ 30
log cos] d (log sin| d |logcot| d |logtan| x Prop. Parts
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II1.

Logarithms of Trigonometric Functions

x |log sin] d |log cos|d (logtan| d |[log cot Prop, Parts
307(9.7844 9.8995 . [9.8850 0.1150 30’
40/ 7861 17" goss; 10 'sg7e; 28 \"112e 207
50| w7e77| 18| so7s| 191 Tmooz] 28| li008| 107
38° 0’(9.7893 9.8065| . 19.8928 0.1072[62° 0’
10| .7910 }é -8955 }g 8954 201" 1046 50’
20'| (7926 15 | 8945 0| .8980| oo | (10200 40’ [TZ6 T 26
30'| .7941) o | 8035 (| .9006| g | .0994]- 307 |5 B 2
4/ 7057 12| sozs| o) o032l I | 0968|207 |3l 7l 73
1Y . .
0.,0' 7973 18| ‘s91s| 10f lo0s8| 28 | l0942 010, HEHE
v oo g pomsl o m g 0omoete 0§ 4
) 16| - 1 - 25| - ;| 8] 20.8f 20.0
20| -so20( 1% sssa| 1o (o135 20| 0865l 40’ ol 284l 2218
30| 8035 || .8874 (| 9161 e | 0839 30’
40’ 18050 8864 0187 0813 20
50’ 8066 }g 8853 10| L0212 28| lorss) 10/
40°18’9.8081 15 |9-8843} | 10,9238 o 0.0_716250° ARNEAEAE
1" 8096 -8832| 111" 9264 0736 50 gl 1|t
20) s1n| 1% | sg2i| 11l [o289 2lom| o |3 3432|530
30/ 8125 | .8810| ol 0315 .o | .0685 307 |3 B 552
R R AL
: 14 | ° 11} 26 | - "] 8] 13.6] 12.8 |12.0
410 0lo.8169| . 19.8778 |10.9302 . l0.0608149° 0’ |9l 153l 144 h's
10 g184) 13 |"Is767) 17 Joai7l 22| loss3l 507
207 8198 13| 8756 || .9443 27| 0557 40
30| 8213 .| .8745 | .0468| o | .0532 30’
40’| .8227 .8733 .9494 .0506 20’ 14 13 |12
sof 8241 111 8722 1l cestol 23 lossr] 107 || Vel T3 |12
42° 0198255 |, 198711 1,/0.9544| ,q 0.0456/48° O 338 28124
1078209 19| .e690f 17| (9570 72 | 0430 507 |4 5Bl B2)4s
20'| 8283 1y | .8688| 5l (9595 22 | .0405 40’ |3 FSl 53|89
30’ .8297) | .8676) 4| .9621) o | .0379] 30" | %I 33} 01|54
40: (83111 14 | .8665| ol .9646) op .0354 20’ ol 12.6! 11.7 (10.8
50'| [saz4| 13| .8653) ;2| 9671 20 | [0320] 10|
43> 0'/0.8338 |, (0.8641] 1,/0.9607] . [0.0303/47° 0O’
10| .8351 18629 19722 .0278] 50’
10 14 1 25 ,
20| (8365 15 | .8618| 15| 9747 ¢ .3253 :g’ TR
30’ .8378 8606 1| .9772 .0228 1| 1] 1.
13 12 26 2 2.2| 2.0}
40| ‘g301 3| ‘8504|121 lovosl 20| .0202f 20’ % 2% 20
50 8405 1y | 8582 13 (9823 oz | L0177 10° |4 43 &g
44° 0'9.8418 . [0.8500 1,0.9848] o¢ [0.015246° O/ s B 538
20| ais 13| Geadl 12| oaas| 28| Ot01 4o |3 &3 89
. 13| 13] - 25 | - ol o9 9.0
30'| .8457 .8532] .| .9924 0076 30’
40'| ‘8469 12| l8520 12 Tood0| 221 Toos1| 207
50| ‘8482 13| 8307 15| .0975) 32| .0025| 107
45° 0'9.8495 9.8495  10.0000 0.0000[45° 0’
log cosjy d |log sin| d [log cot| & |logtan| x Prop. Parts
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III. Natural Values of Trigonometric Functions

X sin x cos x| tan x cot x 8eC X cosec x
0° 0’| .00000 {1.0000|.00000 o© 1.0000 0 90° 0O
10’ | .00291 [1.0000].00291 [343.77 1.0000 | 343.78 50’
20’ | .00582 |1.0000].00582 |171.88 1.0000 | 171.89 40’
30’ | .00873 |1.0000}.00873 [114.59 1.0000 | 114.59 30’
40’ | .01164 .9999/.01164 | 85.940 1.0001 85.946 20’
50’ | .01454 .9999/.01455 | 68.750 1.0001 68.757 10’
1° 0’| .01745 .9998/.01746 | 57.290 1.0002 57.299 | 89° 0
10’ | .02036 .9998!.02036 | 49.104 1.0002 49.114 50"
20" | .02327 .9997/.02328 | 42.964 1.0003 42.976 40’
30 | .02618 .9997/.02619 | 38.188 1.0003 38.202 30"
40’ | .02908 .9996/.02910 | 34.368 1.0004 34.382 20’
50" | .03199 .9995{.03201 | 31.242 1.0005 31.258 10’
2° 0| .03490 .9994/.03492 | 28.6363 1.0006 28.654 | 88° 0’
10’ | .03781 .9993/.03783 | 26.4316 1.0007 26.451 50’
20" | .04071 .9992|.04075 | 24.5418 1.0008 24.562 40’
307 | .04362 .9990/.04366 | 22.9038 | ‘1.0010 22.926 30’
40" | .04653 .9989/.04658 | 21.4704 1.0011 21.494 20’
507 | .04943 .9988/.04949 | 20.2056 1.0012 20.230 10’
3° 0’| .05234 .9986/.05241 | 19.0811 1.0014 19.107 | 87° 0’
10’ | .05524 .9985/.05533 | 18.0750 1.0015 18.103 50"
20" | .05814 .9983/.05824 | 17.1693 1.0017 17.198 40’
30" | .06105 .99811.06116 | 16.3499 1.0019 16.380 30’
40 | .06395 .9980!.06408 | 15.6048 1.0021 15.637 20’
50’ | .06685 .9978|.06700 | "14.9244 1.0022 14.958 10’
4° 0’ | .06976 .9976{.06993 | 14.3007 1.0024 14.336 | 86° 0’
10’ | .07266 .9974(.07285 | 13.7267 1.0027 13.763 50
20" | .07556 .9971|.07578 | 13.1969 1.0029 13.235 40’
30" | .07846 .9969(.07870 | 12.7062 1.0031 12.746 30’
40”7 | ..08136 .9967(.08163 | 12.2505 1.0033 12.291 20’
50" | .08426 .9964/.08456 | 11.8262 1.0036 11.868 10’
5° 0’ | .08716 .9962|.08749 | 11.4301 1.0038 11.474 | 86> 0’
107 | .09005 .9959(.09042 | 11.0594 1.0041 11.105 - 50’
20" | .09295 .9957(.09335 | 10.7119 1.0044 10.758 40’
30’ | .09585 .9954/.09629 | 10.3854 1.0046 10.433 30’
40’ | .09874 .9951/.09923 | 10.0780 1.0049 10.128 20’
50’ | .10164 .9948(.10216 9.7882 1.0052 9.839 10’
6° 0’| .10453 .9945|.10510 9.5144 1.0055 9.5668 84° 0
10" | .10742 .9942(.10805 9.2553 1.0058 9.3092 50"
20" | .11031 .9939/.11099 9.0098 1.0061 9.0652 40’
30’ | .11320 .9936/.11394 8.7769 | 1.0065 8.8337 30’
40’ { .11609 .9932].11688 8.5555 1.0068 8.6138 20’
50’ | .11898 .9929].11983 8.3450 1.0072 8.4647 10’
7 0| .12187 .9925].12278 8.1443 1.0075 8.2055| 83° 0’
107 | .12476 .99221.12574 7.9530 1.0079 8.0157 50’
20" | .12764 .9918/.12869 7.7704 1.0083 7.8344 40’
30" | .13053 .9914].13165 7.5958 1.0086 7.6613 30’
cos X sin x| cot x tan x co8ec X sec X X
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111,

Natural Values of Trigonometric Functions

X sin x cos X tan x | cot x se¢ X | coseC X
307 | .1305 .0914 L1317 | 7.5958 | 1.0086 | 7.6613 30’
40’ | .1334 L9911 L1346 | 7.4287 | 1.0090 | 7.4957 20"
50" | .1363 .9907 L1376 | 7.2687 | 1.0094 | 7.3372 10’_
8 0| .1392 .9903 L1405 | 7.1154 | 1.0098 | 7.1853 | 82° 0O’
107 | .1421 .9899 L1435 | 6.9682 | 1.0102 | 7.0396 50"
207 | L1449 .9894 L1465 | 6.8269 | 1.0107 | 6.8998 40’
3070 1478 .9890 L1495 | 6.6912 | 1.0111 | 6.7655 30"
40" | 1507 .9586 .1524 | 6.5606 | 1.0116 | 6.6363 .20
507} .1536 .9881 L1554 | 6.4348 | 1.0120 | 6.5121 10’
9’ 0| .1564 .9877 .1584 | 6.3138 | 1.0125 | 6.3925 | 81° 0O’
107 ] .1593 L0872 L1614 | 6.1970 | 1.0129 | 6.2772 507
207} .1622 .9868 .1644 | 6.0844 | 1.0134 | 6.1661 40’
307 | L1650 .9863 L1673 | 5.9758 | 1.0139 | 6.0589 30’
40’ 1 .1679 .9858 .1703 | 5.8708 | 1.0144 | 5.9554 20’
507 L1708 .9853 L1733 | 5.7694 | 1.0149 | 5.8554 10’
10° 0| .1736 .0848 .1763 | 5.6713 | 1.0154 | 5.7588 | 80° O’
1071 .1765 0843 L1793 | 5.5764 | 1.0160 | 5.6653 50"
207 1 L1794 9838 L1823 | 5.4845 | 1.0165 | 5.5749 40’
307 | L1822 .9833 L1853 | 5.3955 | 1.0170 | 5.4874 307
407 | L1851 L9827 L1883 | 5.3093 | 1.0176 | 5.4026 - 20/
50 | -1880 .9822 L1914 | 5.2257 | 1.0182 | 5.3205 107
11° 0° ! 1908 | .9816 1044 | 5.1446 | '1.0187 | 5.2408 | 79° 0’
1074 .1937 L9811 L1974 | 5.0658 | 1.0193 | 5.1636 50"
2071 L1965 9805 .2004 | 4.9894 | 1.0199 | 5.0886 40’
207 1 . 1994 L9799 .2035 | 4.9152 | 1.0205 | 5.0159 30"
40712022 9793 .2065 | 4.8430 | 1.0211 | 4.9452 207
507 .2051 9787 L2095 | 4.7729 | 1.0217 | 4.8765 10’
12° 0 ¢ .2079 L9781 L2126 | 4.7046 | 1.0223 | 4.8097 | 78° O
107 .2108 L9775 L2156 | 4.6382 | 1.0230 | 4.7448 50"
20"} .2136 L9769 L2186 | 4.5736 | 1.0236 | 4.6817 40’
307 L2164 L9763 L2217 | 4.5107 | 1.0243 | 4.6202 307
40712193 L9757 .2247 | 4.4494 | 1.0249 | 4.5604 20"
507 1 L2221 L9750 L2278 1 4.3897 1 1.0256 | 4.5022 10/
13° 0' | .2250 L9744 .2309 | 4.3315 | 1.0263 | 4.4454 | 77° O’
107 | 2278 L9737 L2339 | 4.2747 | 1.0270 | 4.3901 50"
207 | L2306 L9730 L2370 | 4.2193 | 1.0277 | 4.3362 40’
307 .2334 L9724 .2401 | 4.1653 | 1.0284 | 4.2837 30’
407 ] .2363 L9717 L2432 ) 4.1126 | 1.0291 | 4.2324 207
507 | .2391 L9710 .2462 | 4.0611 | 1.0299 | 4.1824 10’
14° 0| .2419 .9703 .2493 | 4.0108 | 1.0306 | 4.1336 | 76° O’
107 | 2447 .9696 .2524 | 3.9617 | 1.0314 | 4.0859 50’
207 | .2476 .9689 L2555 | 3.9136 | 1.0321 | 4.0394 40’
307 | .2504 .0681 .2586 | 3.8667 | 1.0329 | 3.9939 30’
407 | 2532 .9674 L2617 | 3.8208 | 1.0337 | 3.9495 20’
50" | .2560 L9667 .2648 | 3.7760 { 1.0345 | 3.9061 - 107
16° 0’ | .2588 .9659 .2679 | 3.7321 | 1.0353 | 3.8637 | 76° O’
cos X sin x cot X tan x | cosec x | sec X b ¢
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III. Natural Values of Trigonometric Functions
g
X sin x | cos x | tan x cot x sec X cosec X
16° 0’ | .2588 .9659 | .2679 | 3.7321 1.0353 3.8637 | 76° 0O’
10’ | .2616 .9652 | .2711 3.6891.] 1.0361 3.8222 50’
207 | .2644 L9644 | .2742 | 3.6470 1.0369 | 3.7817 40’
30" | .2672 .9636 | .2773 | 3.6059 1.0377 3.7420 30’
40’ | .2700 .9628 | .2805 } 3.5656 1.0386 { 3.7032 20"
50" | .2728 .9621 | .2836 | 3.5261 1.0394 3.6652 10’
18° 0 | .2756 L9613 | .2867 | 3.4874 1.0403 3.6280 | T4° O
10° | .2784 .9605 | .2899 | 3.4495 1.0412 3.5915 50’
20’ | .2812 .9596 | .2931 3.4124 1.0421 3.5559 40’
307 | .2840 .9588 | .2962 | 3.3759 1.0430 3.5209 30’
40" | .2868 L9580 | .2994 | 3.3402 1.0439 3.4867 20’
50" | .2896 .95%2 | .3026 | 3.3052 1.0448 3.4532 10’
17° 0 | .2924 .9563 | .3057 3.2709 1.0457 | 3.4203 | 73° O
107 | .2952 .9555 | .3089 | 3.2371 1.0466 | 3.3881 50"
207 | .2979 .9546 | .3121 3.2041 1.0476 | 3.3565 40’
30" | .3007 .9537 | .3153 | 3.1716 1.0485 | 3.3255 30'
40’ | .3035 .9528 | .3185 | 3.1397 1.0495 3.2951 20’
50" | .3062 L9520 | .3217 | 3.1084 1.0505 3.2653 10’
18° 0’ | .3090 L9511 | .3249 | 3.0777 1.0515 | 3.2361 | 72> 0O
10’ | .3118 .9502 | .3281 3.0475 1.0525 | 3.2074 507
20" | .3145 .9492 | 3314 | 3.0178 1.0535 | 3.1792 40’
30’ | .3173 .9483 | .3346 | 2.9887 1.0545 | 3.1516 30’
40’ | .3201 .9474 | .3378 | 2.9600 1.0555 | 3.1244 20’
507 | .3228 .9465 | .3411 2.9319 1.0566 | 3.0977 10
19° 0’ | .3256 .9455 | .3443 | 2.9042 1.0576 | 3.0716 | 71° 0’
107 | .3283 .9446 | .3476 | 2.8770 1.0587 | 3.0458 50’
20’ | .3311 .9436 | .3508 | 2.8502 1.0598 3.0206 40’
30”7 | .3338 .9426 | .3541 2.8239 1.0609 | 2.9957 30’
40’ | .3365 .9417 | .3574 | 2.7980 1.0620 | 2.9714 20’
50’ | .3393 .9407 | .3607 | 2.7725 1.0631 2.9474 10’
20° 0’ | .3420 L9397 | .3640 | 2.7475 1.0642 | 2.9238 | 70° 0
107 | .3448 .9387 | .3673 | 2.7228 1.0653 | 2.9006 50’
20" | .3475 .9377 | .3706 | 2.6985 1.0665 | 2.8779 40’
307 | .3502 .9367 | .3739 | 2.6746 | 1.0676 | 2.8555 30’
40’ | .3529 .9356 | .3772 | 2.6511 1.0688 | 2.8334 20’
50’ | .3557 .9346 | .3805 | 2.6279 1.0700 | 2.8118 10’
21° 0 | .3584 .9336 | .3839 | 2.6051 1.0712 | 2.7904 | 69° 0O’
10’ | .3611 .9325 | .3872 2.5826 1.0724 | 2.7695 50’
20" | .3638 L9315 | .3906 |© 2.5605 1.0736 | 2.7488 40’
30" | .3665 .9304 | .3939 | 2.5386 | 1.0748 | 2.7285 30’
40’ | .3692 L9293 | .3973 1 2.5172 1.0760 | 2.7085 20’
50’ | .3719 .9283 | .4006 | 2.4960 1.0773 | 2.6888 10’
22° 0’| .3746 L9272 | .4040 | 2.4751 1.0785 | 2.6695 | 68° 0’
10’ | .3773 L9261 | .4074 | 2.4545 1.0798 | 2.6504 50"
20" | .3800 .9250 | .4108 | 2.4342 1.0811 2.6316 40’
307 | .3827 .9239 | .4142 | 2.4142 1.0824 | 2 6131 30’
cos x | sin x | cot X | tan X cosec X sec X X
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III. Natural Values of Trigonometric Functions

X sin x cos x | tan x cot x 860 X cosec X
30’ .3827 | .9239 | .4142 2.4142 1.0824 2.6131 30’
40’ L3854 | .9228 | .4176 2.3945 1.0837 2.5949 20’
50" .3881 | .9216 | .4210 2.3750 1.0850 2.5770 10’
123 0 .3907 | .9205 | .4245 2.3559 1.0864 2.5593 | 67° O
10’ .3934 | .9194 | .4279 2.3369 1.0877 2.5419 50"
20’ .3961 | .9182 | .4314 2.3183 1.0891 2.5247 40’
30" .3987 | .9171 | .4348 2.2998 1.0904 2.5078 30’
40’ .4014 | .9159 | .4383 2.2817 1.0918 2.4912 20’
50’ .4041 | .9147 | .4417 2.2637 1.0932 2.4748 10’
24° 0 .4067 | .9135 | .4452 2.2460 1.0946 2.4586 | 66> O’
10/ .4094 | .9124 | .4487 2.2286 1.0961 2.4426 507
20" .4120 | .9112 | .4522 2.2113 1.0975 2.4269 40’
30’ .4147 | .9100 | .4557 2.1943 1.0990 2.4114 30"
40’ L4173 | .9088 | .4592 2.1775 1.1004 2.3961 20’
50" .4200 | .9Q75 | .4928 2.1609 1.1019 2.3811 10’
26° 0 .4226 | .9063 | .4663 2.1445 1.1034 2.3662 | 66° 0’
10/ .4253 | .9051 | .4699 2.1283 1.1049 2.3515 50"
20’ L4279 | .9038 | .4734 2.1123 1.1064 2.3371 40’
30’ .4305 | .9026 | .4770 2.0965 1.1079 2.3228 30’
40’ .4331 | .9013 | .4806 2.0809 1.1095 2.3088 20’
50 .4358 | .9001 | .4841 2.0655 1.1110 2.2949 10’
26° 0 .4384 | .8988 | .4877 2.0503 1.1126 2.2812 | 64° O
10/ .4410 | .8975 } .4913 2.0353 1.1142 2.2677 50"
20" .4436 | .8962 | .4950 2.0204 1.1158 2.2543 40"
30’ .4462 | .8949 | .4986 2.0057 1.1174 2.2412 30’
40’ .4488 | .8936 | .5022 1.9912 1.1190 2.2282 20°
‘50" .4514 | .8923 | .5059 1.9768 1.1207 2.2154 10’
27° 0 .4540 | .8910 | .5095 1.9626 1.1223 2.2027 | 63° 0O
10/ .4566 | .8897 | .5132 1.9486 1.1240 2.1902 50"
20’ .4592 | .8884 | .5169 1.9347 1.1257 2.1779 40’
30’ .4617 | .8870 | .5206 1.9210 1.1274 2.1657 30’
40’ .4643 | .8857 | .5243 1.9074 1.1291 2.1537 20"
. 50’ .4669 | .8843 | .5280 1.8940 1.1308 2.1418 10°
28° ¢’ .4695 | .8829 | .5317 1.8807 1.1326 2.1301 | 62° O
10/ L4720 | .8816 | .5354 1.8676 1.1343 2.1185 50’
20’ .4746 | .8802 { .5392 1.8546 1.1361 2.1070 40’
30’ .4772 | .8788 | .5430 1.8418 1.1379 2.0957 30’
40’ L4797 | .8774 | .5467 1.8291 1.1397 2.0846 20’
50" .4823 | .8760 | .5505 1.8165 1.1415 2.0736 10°
29° 0 .4848 | .8746 | .5543 1.8040 1.1434 |  2.0627 | 61° O’
10’ .4874 | .8732 | .5581 1.7917 1.1452 2.0519 50"
20" | ".4899 | .8718 | .5619 1.7796 1.1471 2.0413 40’
30’ .4924 | .8704 | .5658 1.7675 1.1490 2.0308 30’
40’ .4950 | .8689 | .5696 1.7556 1.1509 2.0204 20’
507 .4975 | .8675 | .5735 1.7437 1.1528 2.0101 10’
30° 0O .5000 | .8660 | .5774 1.7321 1.1547 2.0000 | 60° O
cos X | sin x | cot X tan x cosec X s6¢ X x




II1.

Natural Values of Trigonometric Functions

x sin x cos x | tan x cot x sec X | cosec X
80° 0 .5000 .8660 | .5774 1.7321 1.1547 | 2.0000 | 60° O
10’ .5025 .8646 | .5812 1.7205 1.1567 | 1.9900 50’
20’ .5050 .8631 | .5851 1.7090 1.1586 | 1.9801 40’
30’ .5075 .8616 | .5890 1.6977 1.1606 | 1.9703 30’
40’ .5100 .8601 | .5930 1.6864 1.1626 | 1.9606 20’
50" .5125 .8587 | .5969 1.6753 1.1646 | 1.9511 10’
31° 0 .5150 .8572 | .6009 1.6643 1.1666 | 1.9416 | 69° O’
10/ .5175 .8557 | .6048 1.6534 1.1687 | 1.9323 50"
20" .5200 .8542 | .6088 1.6426 1.1708 | 1.9230 40’
30’ .5225 .8526 | .6128 1.6319°] 1.1728 | 1.9139 307
40’ .5250 .8511 | .6168 1.6212 1.1749 | 1.9049 20"
50’ .5275 .8496 | .6208 1.6107 1.1770 | 1.8959 10’
32° 0’ .5299 .8430 | .6249 1.6003 1.1792 | 1.8871 | 568° 0O’
10’ .5324 .8465 | .6289 1. 5900 1.1813 | 1.8783 50/
20’ .5348 .8450 | .6330 1.5798 1.1835 | 1.8699 40’
30’ .5373 .8434 | .6371 1.5697 1.1857 | 1.8612 30/
40’ .5398 .8418 | .6412 1.5597 1.1879 | 1.8527 20’
50" .5422 .8403 | .6453 1.5497 1.1901 | 1.8444 10/
33° 0 . 5446 .8387 | .6494 1.5399 1.1924 | 1.8361 | 67° 0’
10’ 5471 .8371 1 .6536 1.5301 1.1946 | 1.8279 507"
20" .5495 .8355 | .6577 1.5204 1.1969 | 1.8198 40"
30’ .5519 .8339 | .6619 1.5108 1.1992 | 1.8118 30’
40’ .5544 .8323 | .6661 1.5013 1.2015 | 1.8039 20"
50’ .5568 .8307 | .6703 1.4919 1.2039 | 1 7960 10/
34° 0O .5592 .8290 | .6745 1.4826 1.2062 | 1.7883 | 66° 0’
107 .5616 .8274 | .6787 1.4733 1.2086 | 1.7806 50"
20’ .5640 .8258 | .6830 1.4641 1.2110 | 1.7730 40’
30’ .5664 .8241 | .6873 1.4550 1.2134 | 1.7655 30’
40’ .5688 .8225 | .6916 1.4460 1.2158 | 1.7581 20’
50’ L5712 .8208 | .6959 1.4370 1.2183 | 1.7507 10’
36° 0 .5736 .8192 | ,7002 1.4281 1.2208 | 1.7435 | 6° 0’
10’ .5760 .8175 | .7046 1.4193 1.2233 | 1.7362 50’
20’ .5783 .8158 | .7089 1.4106 1.2258 | 1.7291 40’
30’ .5807 L8141 | .7133 1.4019 1.2283 | 1.7221 307
40’ .5831 L8124 | .7177 1.3934 1.2309 | 1.7151 20"
50’ .5854 8107 | .7221 1.3848 1.2335 | 1.7082 10’
36° 0 .5878 .8090 | .7265 1.3764 1.2361 | 1.7013 | 64° O’
10’ .5901 .8073 | .7310 1.3680 1.2387 | 1.6945 50"
20’ .5925 .8056 | .7355 1.3597 1.2413 | 1.6878 40’
30’ .5948 .8039 | .7400 1.3514 1.2440 | 1.6812 30’
40’ .5972 .8021 | .7445 1.3432 1.2467 | 1.6746 20"
507 .5995 .8004 | .7490 1.3351 1.2494 | 1.6681 107
87° o .6018 L7986 | .7536 1.3270 1.2521 | 1.6616 | 63° 0’
10 .6041 L7969 | .7581 1.3190 1.2549 | 1.6553 50"
20 .6065 L7951} L7627 1.3111 1.2577 | 1.6489 40’
30" . 6088 L7934 | .7673 1.3032 1.2605 | 1.6427 30’
cos X sin x | cot x| tan x coseC X | sec X X
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III.

Natural Values of Trigonometric Functions

x sin x | cos x | tan x cot x sec X cosec X
30’ .6088 | .7934 | .7673 | 1.3032 1.2605 1.6427 30’
40’ J6111 | .7916 | .7720 | 1.2954 1.2633 1.6365 207
507 L6134 | .7898 | .7766 1.2876 1.2662 1.6304 10’
38° 0 L6157 | .7880 | .7813 | 1.2799 | 1.2690 1.6243 | 62° 0
10’ .6180 | .7862 | .7860 1.2723 1.2719 1.6183 50’
20’ .6202 | .7844 | .7907 1.2647 1.2748 1.6123 40’
30’ .6225 | .7826 | .7954 1.2572 1.2779 1.6064 307
40’ .6248 | .7808 | .8002 1.2497 1.2808 1.6005 20’
50’ L6271 | 7790 | .8050 1.2423 1.2837 1.5948 10’
39° 0 .6293 | .7771 | .8098 1.2349 1.2868 1.5890 | 61° 0O’
10’ L6316 | .7753 | .8146 1.2276 1.2898 1.5833 507
20’ .6338 | .7735 | .8195 1.2203 1.2929 1.5777 40’
30’ L6361 | .7716 | .8243 1.2131 1.2960 1.5721 307
40’ .6383 | .7698 | .8292 1.2059 1.2991 1.5666 20°
50’ .6406 | .7679 | .8342 1.1988 1.3022 1.5611 10’
40° O .6428 | .7660 | .8391 1.1918 1.3054 | 1.5557 | 60° 0O
10’ .6450 | .7642 | .8441 1.1847 1.3086 1.5504 50"
20’ .6472 | .7623 | .8491 1.1778 1.3118 1.5450 40’
30’ .6494 | .7604 | .8541 1.1708 1 3151 1.5398 30’
40’ L6517 | .7585 | .8591 1.1640 1.3184 1.5346 20
50" .6539 | .7566 | .8642 | 1.1571 1.3217 1.5294 10’
41° 0 L6561 | .7547 | .8693 1.1504 1.3250 1.5243 | 49° 0
10’ L6583 | .7528 | .8744 1.1436 1.3284 1.5192 50"
207 .6604 | .7509 | .8796 | 1.1369 1.3318 1.5142 10’
30’ .6626 | .7490 | .8847 | 1.1303 1.3352 1.5092 307
40’ .6648 | .7470 | .8899 1.1237 1.3386 1.5042 207
507 .6670 | .7451 | .8952 1.1171 1.3421 1.4993 10’
42° 0’ .6601 | .7431 | .9004 1.1106 | 1.3456 1.4945 | 48> 0’
10’ L6713 | L7412 | .9057 1.1041 1.3492 1.4897 50’
20’ L6734 | .7392 | .9110 1.0977 1.3527 1.4849 40’
30’ L6756 | .7373 | .9163 1.0913 1.3563 1.4802 30’
40’ L6777 | .7353 | .9217 [ 1.0850 1.3600 1.4755 20'
507 L6799 | .7333 | .9271 1.0786 1.3636 1.4709 10’
43° 0 .6820 | .7314 | .9325 1.0724 1.3673 1.4663 | 47° 0’
10 L6841 | .7294 | .9380 1.0661 1.3711 1.4617 507
20" .6862 | .7274 | .9435 1.0599 1.3748 1.4572 49’
30’ .6884 | .7254 | .9490 1.0538 1.3786 1.4527 30°
40’ .6905 | .7234 | .9545 1.0477 1.3824 1.4483 20°
50" .6926 | .7214 | .9601 1.0416 1.3863 1.4439 10’
4° 0 .6947 | ,7193 | .9657 1.0355 1.3902 1.4396 | 46> 0O
10’ .6967 | .7173 | .9713 1.0295 1.3941 1.4352 50’
20’ .6988 | .7153 | .9770 1.0235 1.3980 1.4310 40’
30’ .7009 | .7133 | .9827 1.0176 1.4020 1.4267 30’
40’ L7030 | L7112 | ,9884 1.0117 1.4061 1.4225 20’
50’ L7050 | .7092 | .9942 1.0058 1.4101 1.4184 10’
46° 0 L7071 | .7071 |1.0000 1.0000 1.4142 1.4142 | 46° -0’
cos x | sinx | cot x tan x cosec X 860 X X
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0° 0’
10/
20/
30/
a0’
50’

10 ol
10/
20’
30’
40’
507

2° 0
10/
20’
30’
40/
50"

30 0’
10°
20’
30’
40’

4°0'

7° 0’

20’
30’
40’
50

IV. Haversines, Natural and Logarithmic

Nar.
.0000
.0000
.0000
.0000
.0000
.0001

.0001
.0001
.0001
.0002
.0002
.0003

.0003
.0004
.0004
.0005
.0005
.0006

.0007

.0008

.0008
.0009

.0010
.0011

.0012

.0013
.0014
.0015
.0017

0018

.0019
.0020
.0022

.0023

.0024

.0026

.0027
.0029
.0031
.0032
.0034
.0036

.0037
.0039
.0041
.0043
.0045
.0047

Loa.
—00
4.3254
4.9275
5.2796
5.5295
5.7233

5.8817
6.0156
6.1315
6.2388
6.3254
6.4081

6.4837
6.5532
6.6176
6.6775
6.7336
6.7862

6.8358
6.8828
6.9273
6.9697
7.0101
7.0487

7.0856
7.1211
7.1551
7.1879
7.2195
7.2499

7.2794
7.3078
7.3354
7.3621
7.3880
7.4132

7.4376
7.4614
7.4845
7.5071
7.5290
7.5504

7.5713
7.5918
7.6117
7.6312
7.6503
7.6689

8°0’
10’
20’
30

40’

13° 0
10’
20
30
40’
50’

14° 0’
10’
20’
30’
40’
50

15°0’
10’
20’
30’

50’

Nar.
.0049
.0051
.0053
.0055
.0057
.0059

0062

.0064

.0066
.0069
.0071
.0073

.0076
.0079
.0081
.0084
.0086
.0089

.0092

.0095
.0097
.0100
.0103
.0106

.0109
0112
.0115
.0119
0122
0125

.0128
.0131
.0135
.0138
0142
.0145

.0149
.0152
.0156
.0159
.0163
.0167

.0170
.0174
.0178
.0182
.0186
.0190
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Loa.
7.6872
7.7050
7.7226
7.7397
7.7566
7.7731

7.7893
7.8052
7.8208
7.8361
7.8512
7.8660

7.8806
7.8949
7.9090
7.9229
7.9365
7.9499

7.9631
7.9762
7.9890
8.0016
8.0141
8.0264

8.0385
8.0504
8.0622
8.0738
8.0852
8.0966

8.1077
8.1187
8.1296
8.1404
8.1510
8.1614

8.1718
8.1820
8.1921
8.2021
8.2120
8.2217

8.2314
8.2409
8.2504
8.2597
8.2689
8.2781

16° 0’
10/
20’
30’
40’
50"

17° 0’
10/
20’
30’
40’
50’

18° 0/
100
20’
30’
40’
50’

19° 0’
10/
20’
30’
40’
50’

2000’
10/
20’
30’
a0’
50’

2100/
10/
20’
30’
40’

Nar.
0194
.0198
.0202
.0206
.0210
0214

0218
0223
0227
.0231
.0236
.0240

.0245
.0249
0254
.0258
.0263
.0268

0272

.0277
L0282
0287
0292
.0297

.0302
.0307
0312
0317
.0322
0327

.0332
.0337
.0343
.0348
0353
L0359
.0364
.0370
0375
.0381
0386
0392

.0397
.0403
.0409
0415
0421
.0426

Loa.
8.2871
8.2961
8.3049
8.3137
8.3223
8.3309

8.3394
8.3478
8.3561
8.3644
8.3726
8.3806

8.3887
8.3966
8.4045
8.4123
8.4200
8.4276

8.4352
8.4427
8.4502
8.4576
8.4649
8.4721

8.4793
8.4865
8.4935
8.5006
8.5075
8.5144

8.5213
8.5281
8.5348
8.5415
8.5481
8.5547

8.5612
8.5677
8.5741
8.5805
8.5868
8.5931

8.5993
8.6055
8.6116
8.6177
8.6238
8.6298



24° 0’
10/
20/
30’
a0
50’

25°0°
10
20/
30’
40’
50’

26° 0/
10/
20’
30/
40’
50’

27° 0
10
20/
30’
40/
50’

28° 0/
10/
20/
30’
40’

29° 0’

1v.

Nar.
.0432
.0438
0444
.0450
.0456
L0462

.0468
0475
.0481

.0487

.0493
.0500

.0506
0512
.0519
0525
0532
0538
0545
.0552
L0558
L0565
0572
.0578
L0585
.0592
.0599
0606
.0613

.0620

0627
.0634

0641
0648
.0655
0663

.0670
0677
.0684
.0692
.0699
0707

0714
0722
0729
0737
0744

0752

Haversines, Natural and Logarithmic

Loa.
8.6358
8.6417
8.6476
8.6534
8.6592
8.6650

8.6707
8.6764
8.6820
8.6876
8.6932
8.6987

8.7042
8.7096
8.7150
8.7204
8.7258
8.7311

8.7364
8.7416
8.7468
8.7520
8.7572
8.7623

8.7673
8.7724
8.7774
8.7824
8.7874
8.7923

8.7972
8.8021
8.8069
8.8117
8.8165
8.8213

8.8260
8.8307
8.8354
8.8400
8.8446
8.8492

8.8538
8.8583
8.8629
8.8673
8.8718
8.8763

32°0'
10’
20’
30’
40’
5()’
33°0’
10
20’
30
40’
50
34°0°
10’
20'
30
40’
50
35°0’
10’
20
30"
40’
50
36°0’
10’
20
30
40’
50
37°0
10’
20/
30’
40
50
38°0’
10
20
30’
40’
50
39°0'
10
20’
30
40’
m'

Nar.
0760
0767
0775
0783

0791
.0799

.0807
0815

.0823
0831

.0839

0847

.0855
0863
0871
0879
.0888
0896

.0904
.0913
.0921

.0929

0938
0946

0955
L0963
0972
0081
.0989
.0998

.1007
.1016
1024
1033
1042
.1051

.1060

.1069
.1078

.1087

.1096
.1105

1114
1123
1133
1142
1151
.1160
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Loa.
8.8807
8.8851
8.8894
8.8938
8.8981
8.9024

8.9067
8.9109
8.9152
8.9194
8.9236
8.9277

8.9319
8.9360
8.91401
8.9442
8.9482
8.9523
8.9563
8.9603
8.9643
8.9682
8.9721
8.9761
8.9800
8.9838
8.9877
8.9915
8.995¢
8.9992

9.0030
9.0067
9.0105
9.0142
9.0179
9.0216

9.0253
9.0289
9.0326
9.0362
9.0398
9.0434

9.0470
9.0505
9.0541
0.0576
9.0611
9.0646

40° 0’
10’
20’
30’
40’
50'

a1°0’
10’
m’
30’
40’
50’

42° 0
10
20’
30’
40’
50’

43°0
10’
20'
30’
40’
50°

a0
10’
20'
30’
40’
50°

45° 0’
10
20/
30’
40’
50

46° 0’
10/

20’
30’
40’
50°

ar o
10/
20’
30’
40’
50°

Nar.

1170
1179

1189

1198
1207
1217

1226

1236
1246
1255
1265
A275
1284
1294
1304
1314
1323
1333
1343
1353
L1363
1373
L1333
1393
1403
1413
Q424

1434

444
1454
1464
1475

485

1495
1506

1516

1527
1537
1548
.1558
1569

1579

.1590
.1601
1611
1622
1633
1644

Loc.
9.0681
9.0716
9.0750
9.0784
9.0819
9.0853

9.0887
9.0920
9.0954
9.0987
9.1020
0.1054

0.1087
9.1119
9.1152
0.1185
91217
9.1249

0.1281
9.1314
9.1345
9.1377
9.1409
9.1440

9.1472
9.1503
9.1534
9.1565
9.1596
9.1626

9.1657
9.1687
9.1718
9.1748
9.1778
9.1808
0.1838
9.1867
9.1897
0.1926
0.1956
9.1985

9.2014
9.2043
9.2072
9.2101
9.2129
9.2158



48° 0’
10
20
30
40’

49°0’
10’
20’
30’
40’
50
50° 0’
10’
20’
30’
40’
50’
51°0’
10
20
30
40
50
52° 0’
10’
20’
30’
40’
50

53° 0’

1v.

Nar.

1654
.1665

.1676
.1687
.1698
1709

1720
1731
1742
1753
1764
1775

1786
2797
.1808
.1820
.1831
1842

1853
.1865
1876
1887
1899
1910

1922
.1933
1945
.1956
1968
.1979

.1991
2003
.2014
2026
.2038
2049

.2061
2073
.2085
.2096
.2108
2120

2132
2144
2156
2168
.2180
2192

Haversines, Natural and Logarithmic

Loa.

9.2186
9.2215
9.2243
9.2271
9.2299
9.2327

9.2355
9.2382
9.2410
9.2437
9.2465
9.2492

9.2519
9.2546
9.2573
9.2600
9.2627
9.2653

9.2680
9.2706
9.2732
9.2759
9.2785
9.2811

9.2837
9.2863
9.2888
9.2914
9.2940
9.2965

9.2991
9.3016
9.3041
9.3066
9.3091
9.3116

9.3141
9.3166
9.3190
9.3215
9.3239
9.3264

9.3288
9.3312
9.3336
9.3361
9.3384
9.3408

56° 0’
10’
20
30
40’
50’

57° 0’
10’
20
30
40’
50

58° 0’
10’
20’
30’
40’
50

59° 0’

20
30
40’
507
60° 0’
B 14
20
30
40’
50’
61° 0’
10’
20
30
40’
50
62° 0’
10’
20/
30
40’
50’
630 0’
10/
20’
30’
40’
50

Nar.

2204
2216

2228

.2240

2252
2265

2277
.2289
.2301
2314
2326
2338
.2350
.2363
2375
.2388
.2400
2412

2425
.2437
.2450
.2462
2475
2487

.2500
2513
2525
.2538
2551
2563

2576

2589
.2601
2614
2627
2640

.2653

.2665
.2678

2691

2704
2717

2730

2743
2756
2769

2782

2795
260

Loa.

9.3432
9.3456
9.3480
9.3503
9.3527
9.3550

9.3573
9.3596
9.3620
9.3643
9.3666
9.3689

9.3711
9.3734
9.3757
9.3779
9.3802
9.3824

9.3847
9.3869
9.3891
9.3913
9.3935
9.3957

9.3979
9.4001
9.4023
9.4045
9.4066
9.4088

9.4109
9.4131
9.4152
9.4173
9.4195
9.4216

9.4237
9.4258
9.4279
9.4300
9.4320
9.4341

9.4362
9.4382
9.4403
9.4423
Q4444
9.4484

64° 0’
10’
20/
30
40’
50’

65° 0’
10’
20’
30
40’
50

66° 0’

10/.

20’
30
40’
50
67° 0’
10’
20’
30’
40’
50’
68° 0’
10’
20’
30’
40’
50
69° 0’
10’
20
30
40’
50
70° 0’
10’
20
30
40’
50
71°0’
10
20
30’
40’
50

Nar.

.2808
2821
2834
2847
2861
2874

.2887

.2900

2913

2927

.2940
2953

.2966

.2980
2993

.3006
.3020
.3033

.3046
.3060
3073
.3087
.3100
3113

3127
3140
3154
3167
3181
3195

.3208
3222
3235
.3249
3263
3276
3290
3304
3317
3331
3345
3358
3372
.3386
.3400
3413
3427
3441

Loa.
9.4484
9.4504
9.4524
9.4545
9.4565
9.4584

9.4604
9.4624
9.4644
9.4664
9.4683
9.4703

9.4722
9.4742
9.4761
9.4780
9.4799
9.4819

9.4838
9.4857
9.4876
9.4895
9.4914
9.4932

9.4951
9.4970
9.4989
9.5007
9.5026
9.5044

9.5063
9.5081
9.5099
9.5117
9.5136
9.5154

9.4172
9.5190
6.5208
9.5226
9.5244
9.5261

9.5279
9.5297
9.5314
9.5332
9.5349
9.5367



72° 0/
10’
20’
30’
40’
50’

73° 0!
10/
20’
30’
40’
'50)

74° 0/
10
207
30'
40’
50’

75° 0’
10/
20’
30’
40’
50’

76° 0’
10’
20/
30’
40’
50'

77° 0’
10’
20'
30’
40’
50’

78° 0’

20
30’
40’
50
79° 0’
10’
20
30’
40’
50

Iv.

Nar.

.3455
.3469
.3483
.3496
.3510
3524

.3538
3552
3566
.3580
.3594
.3608

.3622
.3636
.3650
3664
3678
3692
.3706
3720
3734
.3748
3762
3776

3790
.3805
.3819
3833
.3847
.3861

.3875
.3889
.3904
3918
.3932
.3946

.3960

3975
.3989
4003
.4017
4032

.4046
.4060
4075
.4089
4103
4117

Haversines, Natural and Logarithmic

Loa.

9.5384
9.5402
9.5419
9.5436
9.5454
9.5471

9.5488
9.5505
9.5522
9.5539
9.5556
9.5572

9.5589
9.5606
9.5623
9.5639
9.5656
9.5672

9.5689
9.5705
9.5722
9.5738
9.5754
9.5771

0.5787
9.5803
9.5819
9.5835
9.5851
9.5867
9.5883
9.5899
9.5915
9.5930
9.5946
9.5962
9.5977
9.5993
9.6009
9.6024
9.6039
9.6055

9.6070
9.6085
9.6101
9.6116
9.6131
9.6146

80° 0’
10/
20’
30’
40’
50’

81°0
10°
20’
30’
40'
50'

82° 0/
10’
20’
30’
40’
50’

83° 0’
10/
20’
30’
10’
50’

840 ol
10’
20'
30"
40’
50°

85° 0’
10/
20’
30’
40’
50°

86° 0/
10’
20’
30’
40
50'

87° 0’
10/
20’
30’
40'
50'

Nar.
4132
4146
.4160
4175
4189
4203

4218
4232
4247
4261
4275
4290

4304

4319

4333
A347
4362
4376

4391
4405
.4420
4434
4448
4463

4477
14492
.4506
4521
4535
.4550
.4564
4579
.4593
4608
4622
4637

.4651
4666
.4680
4695
4709
4721

.4738
4753
4767
4782
4796
4811

261

Loa.

9.6161
9.6176
9.6191
9.6206
9.6221
9.6236

9.6251
9.6266
9.6280
9.6295
9.6310
9.6324

9.6339
9.6353
9.6368
9.6382
9.6397
9.6411

9.6425
9.6440
9.6454
9.6468
9.6482
9.6496

9.6510
9.6524
9.6538
9.6552
9.6566
9.6580

9.6594
9.6607
9.6621
9.6635
9.6648
9.6662

9.6676
9.6689
9.6703
9.6716
9.6730
9.6743

9.6756
9.6770
9.6783
9.6796
9.6809
9.6822

88° 0’
10’
20
30’
40’
50’

89° 0’
10’
20
30
40’
50'

90° 0’
10’
20
30’
40
50'

91°0’
10
20’
30
40’
50

Nar.
4826
4840
4855
4869
4884
4898

4913
40927
4942
4956
4971
4985

.5000
.5015
.5029
5044
.5058
5073
.5087
.5102
5116
5131
5145
.5160

5174
5189
5204
5218
5233
5247
5262
5276
5291
5305
.5320
5334

.5349
5363
5373
5392
5407
5421

.5436
.5450
.5465
5479
.5494
.5508

Loc.
9.6835
9.6848
9.6862
9.6875
9.6887
9.6900

9.6913
9.6926
9.6939
9.6952
9.6964
9.6977
9.6990
9.7002
9.7015
0.7027
9.7040
9.7052
9.7065
9.7077
9.7090
9.7102
9.7114
9.7126

9.7139
9.7151
9.7163
9.7175
9.7187
9.7199

9.7211
9.7223
0.7235
9.7247
0.7259
9.7271
9.7283
9.7294
9.7306
9.7318
9.7329
9.7341

9.7353
9.7364
9.7376
9.7387
9.7399
9.7410



96° 0’
10’
20’
30
ml

97°0’
10
20°
30’
40’

98° 0’
10’
20’
30’
40’

99° 0’
10/
20/
30’
40’
50"

100° 0/
10/
20/
30’
40’
50"

101°0’

20’
30’
40’
50’
102°0'
10’
20’
30’
40’
50’
103°0’
10’
20
30’
40’
50’

Iv.

Nart.
.5523
.5537
5552
.5566
.5580
.5595

.5609
5624
.5638
.5653
.5667
.5681

.5696
5710

5725

5739
5753
5768

5782
5797
.5811
.5825
.5840
5854

.5868
.5883
.5897
5911
.5925
.5940

.5954
5968
.5983
.5997
6011
6025

.6040
6054
6068
.6082
.6096
6111

6125
6139
6153
6167
6181
6195

Haversines, Natural and Logarithmic

Loa.

9.7421
9.7433

9.7444 -

9.7455
9.7467
9.7478

9.7489
9.7500
9.7511
9.7522
9.7534
9.7545

9.7556
9.7567
9.7577
9.7588
9.7599
9.7610

9.7621
9.7632
9.7642
9.7653
9.7664
9.7674

9.7685
9.7696
9.7706
9.7717
9.7727
9.7738

9.7748
9.7759
9.7769
9.7779
9.7790
9.7800

9.7810
9.7820
9.7830
9.7841
9.7851
9.7861

9.7871
9.7881
9.7891
9.7901
9.7911
9.7921

104°0’
10’
20
30
40’
50
105° 0’
10’
20’
30’
40’
50
106° 0’
10’

40’
50
108° 0’
10’
20’
30’
40’
50’
109°0’
10’
20
30’
40’
50
110°0’
10’
20
30’
40’
50
111°0’
10’
20’
30
40’
50

NaT.
.6210
.6224
.6238
.6252
.6266
.6280

6294
6308
6322
6336
6350
.6364
.6378
6392
.6406
.6420
6434
.6448

.6462
6476
.6490
.6504
6517
6531
6545
6559
6573
6587
6600
6614
.6628
.6642
6655
6669
6683
6696

6710
6724
6737
6751
8765
6778

6792
.6805
6819
6833
6846
6860

262

Loa.

9.7931
9.7940
9.7950
9.7960
9.7970
9.7980

9.7989
9.7999
9.8009
9.8018
9.8028
9.8037

9.8047
9.8056
9.8066
9.8075
9.8085
9.8094

9.8104
9.8113
9.8122
9.8131
9.8141
9.8150

9.8159
9.8168
9.8177
9.8187
9.8196
9.8205

9.8214
9.8223
9.8232
9.8241
9.8250
9.8258

9.8267
9.8276
9.8285
9.8294
9.8302
9.8311

9.8320
9.8329
9.8337
9.8346
0.8354
9.8363

12°0°
10/
20’
30’
a0’
50'
113°0'
10/
20'
30’
40’
50’
114°0'
10/
20'
30’
40’
50°
115°0’
10/
20’
30’
40’
50’
116°0’
10’
20’
30’
40’
50’
17°0’
10/
20/
30/
40’
50'
18°0’
10/
20'
30’
40’
50/
119°0’
10°
20’
30’
40’
50°

NarT.
6873
6887
.6900
.6913
6927
.6940

.6954
6967
.6980
.6994
7007
7020

7034
7047
7060

7073
7087
.7100

7113
7126

7139

7153
7166
7179

7192

7205
7218

7231

7244

71257
7270
7283
7296
7309
7322
7335

7347
7360
7373
7386
7399
7411

7424
7437
7449
7462
7475
7487

Loa.

9.8371
9.8380
9.8388
9.8397
9.8405
9.8414

9.8422
9.8430
9.8439
9.8447
9.8455
9.8464

0.8472
9.8480
9.8488
9.8496
9.8504
9.8513

9.8521
9.8529
9.8537
9.854%0
9.8553
9.8561

9.8568
9.8576
9.8584
9.8592
9.8600
9.8608

9.8615
9.8623
9.8631
9.8638
9.8646
9.8654

9.8661
9.8669
9.8676
9.8684
9.8691
9.8699

9.8706
9.8714
9.8721
9.8729
9.8736
9.8743



125°0'

30’
40’
50’
126°0’
10’
20’
30’
40’

127° 0’
10’
20’
30’
40/
50’

1v.

NarT.

7500
7513
7525
7538
7550
7563

TH75
7588
7600
7612
7625
7637
7650
7662
7674
7686

L7699
7711

oy

A

7735

7748

7760
7772
7784
7796
7808
7820
7832
7844
7856

7868
.7880
7892
7904

7915

7927

7939
7951

7962
7974

7986
7997

.8009
.8021

8032
.8044
8055

8067

Haversines, Natural and Logarithmic

Loc.
9.8751
9.8758
9.8765
9.8772
9.8780
9.8787
9.8794
9.8801
9.8808
9.8815
9.8822
9.8829

9.8836
9.8843
9.8850
9.8857
9.8864
9.8871

9.8878
0.8885
9.8892
9.8898
9.8905
9.8912

9.8919
9.8925
9.8932
9.8939
0.8915
9.8952
9.3959
9.8965
9.8972
9.8978
0.8985
0.8991

9.8998
9.9004
9.9010
9.9017
9.9023
9.9030
9.9036
9.9042
0.9048
9.9055
9.9061
9.9067

128° 0’
10’
20
30’
40’
50’
129° 0’
10’
20’
30’
40’
507
130°0’
10
20’
30’
40’
50
131 °0’
10’
20’
30
40’
50’
132°0’
10’
20/
30’
40’
50"
133°0’
10’
20’
30’
40’
50’
134° 0’
10’
207
30’
40’
50’
135°0’
10’
20
30’
40’
50"

Nar.
.8078
.8090
.8101
8113
8124
8135

8147
.8158
.8169
8180
.8192
.8203

8214
8225
.8236
8247
8258
8269
.8280
8291
.8302
8313
8324
83335
8346
8356
8367
.8378
8389
8399

8410
8421
.8431
8442
8452
8463

8473
8484
84904
.8505
8515
8525

.8536
8546
.8556
8566
.8576
.8587

263

Loa.

9.9073
9.9079
9.9085
9.9092
9.9098
9.9104

9.9110
9.9116
9.9122
9.9128
9.9134
9.9140

0.9146
9.9151
9.9157
9.9163
9.9169
9.9175

9.9180
9.9186
9.9192
9.9198
9.9203
9.9209

9.9215
9.9220
9.9226
9.9231
9.9237
9.9242
9.9248
0.9253
9.9259
9.9264
9.9270
9.9275

9.9281
9.9286
9.9291
9.9297
9.9302
9.9307

9.9312
9.9318
9.9323
9.9328
9.9333
9.9338

136°0'
10’
20’
30
40’
50
137° 0’
10’
20’
30
40’
50
138° 0’
10’
20’
30’
40’
50
139° 0’
10’
20’
30’
40’
50’
140° 0’
10’
20’
30
40’
50"
141°0’
10’
20’
30
40’
50
142° 0’
10’
20
30
40’
50
143°0’
10’
20’
3()’
40’
50"

Nar.

8597
.8607
8617
.8627
.8637
.8647

8657
.8667
.8677
.8686
.8696
.8706

.8716
8725
.8735
8745
8754
8764

8774
8783
8793
.8802
8811
8821

.8830
.8840
.8849
8858
8867
8877
.8886
.8895
8004
.8913
.8922
.8931

.8940
8949
.8958
8967
.8976
.8984

.8993
.9002
9011
9019
9028
9037

Loa.

9.9343
9.9348
9.9353
9.9359
9.9364
9.9369

9.9374
9.9379
9.9383
9.9388
9.9393
9.9398

9.9403
9.9408
9.9413
9.9417
9.9422
9.9427

9.9432
9.9436
9.9411
9.9446
9.9450
9.9455

9.9460
9.9464
9.9469
9.9473
9.9478
9.9482

9.9487
9.9491
9.9496
9.9500
9.9505
9.9509

9.9513
0.9518
9.9522
9.9526
9.9531
9.9535
9.9539
9.9543
9.9548
9.9552
9.9556
9.9560



144° 0’
100
20’
30’
40’
50’

145° 0/
10
20’
30’
40’
50"

146° 0’

20
30
40’
50

147° 0’

20
30
40’
50
148° 0’
10’
20
30’
40’
50
149° 0’
10’
20’
30
40’
50
150° 0’
10’
20
30
40’
50’

151°0’

20’
30’
40’
50

1v.

Nar.
9045
9054
9062
9071
9079
.9087

.9096
9104
9112
9121
9129
9137

9145

9153
9161

9169

0177
9185

9193
.9201
9209
9217
9225
9233

9240
9248
9256
9263
9271
9278

.9286
9293
9301
9308
9316
9323

9330
9337
9345
19352
9359
9366

9373
.9380
9387
9394
9401
.9408

Haversines, Natural and Logarithmic

Loa.
9.9564
9.9568
9.9572
9.9576
9.9580
9.9584

9.9588
9.9592
9.9596
9.9600
9.9604
9.9608

9.9612
9.9616
9.9620
9.9623
9.9627
9.9631
9.9635
9.9638
9.9642
9.9646
9.9650
9.9653

9.9657
9.9660
9.9664
9.9668
9.9671
9.9675

9.9678
9.9682
9.9685
9.9689
9.9692
9.9695

9.9699
9.9702
9.9706
9.9709
9.9712
9.9716

9.9719
9.9722
9.9725
9.9729
9.9732
9.9735

152°0’
10/

20’

30’

40’

50’
153°0’
10

20

30’

40’

50"
154°0’
10’

20’

30

40’

50
155°0’
10

20

30

40’

50
156° 0’
10’

20’

30’

40’

50’
157°0’
© 10
20’

30’
40’

50
158°0’
10’

20
30
40’
50’
159° 0’
10’

20’
30
40’

50

Nar.
0415
9422
.9428
9435
9442
.9448

9455
9462

19468
9475

L9481

9488

9494

9500
9507

9513

9519
9525

9532
L9538
19544
L9550
9556
9562

9568
9574
L9579
9585
L9591
9597

9603
9608
9614

9619
9625
.9630

9636

9641

.9647

9652
9657

,9663
.9668

9673
9678

9683
9688
9693

264

Loa.

9.9738
9.9741
0.9744
9.9747
9.9751
9.9754

0.9757
9.9760
9.9763
9.9766
9.9769
9.9772

9.9774
0.9777
9.9780
9.9783
9.9786
9.9789

9.9792
9.9794
9.9797
0.9800
9.9803
9.9805

9.9808
0.9811
9.9813
9.9816
9.9819
9.9821

9.9824
9.9826
9.9829
9.9831
9.9834
9.9836

9.9839
9.9841
9.9844
9.9846
9.9849
9.9851

9.9853
9.9856
9.9858
9.9860
9.9863
9.9865

160° 0’
10’
20’
30’
40!
50'

161°0’
10/
20
30/
40’
50’

162° 0’
10"
20’
30’
40’
50’

163° 0’
10’
20’
30’
40’
50’

164° 0’
10’
20’
30’
40’
50’

165° 0’
10/
20’
30’
40’
50’

166° 0’
10’
20"
30’
40’
50°

167° 0’
10’
20’
30’
40’
50’

NarT.
.9698

9703

9708
9713

0718
9723
9728

9732

0737
0742

0746

9751
0755
9760
764

9769
0773
ATTT
0782
0786
9790
0794
97908
0802

9806
0810
0814
0818
0822
0826

L9830
L9833
0837
9841
0844
L0848

9851
9855
L9858
9862
9865
9869

9872
9875
9878
9881
9885
9888

Loa.
9.9867
9.9869
9.9871
9.9874
9.9876
9.9878

9.9880
9.9882
9.9884
9.9886
0.9888
9.9890

9.9892
9.9894
9.9896
9.9898
9.9900
9.9902

9.9904
9.9906
9.9908
9.9910
9.9911
9.9913

9.9915
9.9917
9.9919
9.9920
9.9922
9.9924
9.9925
9.9927
9.9929
9.9930
9.9932
9.9933

9.9935
9.9937
9.9938
9.9940
9.9941
9.9943

9.9944
9.9945
9.9947
9.9948
9.9950
9.9951



168° 0’

20
30
40’
50
169° 0’
10
20"
30
4’
50

170°0’

20’
30’
40’
50

17100’
207
30’
40’

1V,

Nar.
9891
9894
9897
.9900
.9903
L9905

9908

L9911

L0914
9916

9919
9921
L0921
0927
L9929

9931
0931
L9936
L9938
L0041
9943
L0945
L0947
L0949

Haversines, Natural and Logarithmic

Log.
9.9952
9.995¢
9.9955
9.9956
09.9957
9.9959

9.9960
9.9961
9.9962
9.9963
9.9965
9.9966

9.9967
9.9968
9.9969
9.9970
9.9971
9.9972
9.9973
0.9974
9.9975
9.9976
9.9977
9.99738

172°0’
10’
20’
30’
40’
50°
173° 0’
10/
20’
3()[
40’
50’
174° 0’
10/
20’
30’
20’
50’
175° 0’
10/
20’
30’
40’
50’

Nar.
L9951
19953
9955
L9957
.9959
L0961

.9963
9964
0966
0968
9969
19971
9973
9974
9976
0977
L9978
0980
0981
L0982
L0983
L9985
L9986
L9987
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Loa.
9.9979
9.9980
9.9981
9.9981
9.9982
9.9983

9.9984
9.9984
9.9985
9.9986
9.9987
0.9987

9.9988
9.9989
9.9989
9.9990
9.9991
9.9991

9.9992
9.9992
9.9993
9.9993
9.9994
9.9994

Nar.

176°0" .9988
10" .9989

20" .9990

30" .9991

40" .9992

50" 9992

177°0" .9993
10" .9994
20’ 9995
30" .9995
40" .9996
50" .9996

178°0" .9997
10" .9997
20" .9998
30" .9998
40" .9999
50" 9999

179°0" .9999
10" .9999
20’ 1.0000
30’ 1.0000
40’ 1.0000
50" 1.0000

Loa.
9.9995
9.9995
9.9996
9.9996
9.9996

1 9.9997

9.9997
9.9997
9.9998
9.9998
9.9998
9.9998

9.9999
9.9999
9.9999
9.9999
9.9999
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000



V.

o

Degrees to Radians and v.v.

n degrees

n minutes

n seconds

n radians into

2 | into radians | into radians | into radians a degree measure
-0 0.00000 0.00000 '0.00000
.1 0.01745 0.00029 0.00000 0.00001 0° 0’ 02"
2 0.03491 0.00058 0.00001 0.00002 0 0 04
3 0.05236 0.00087 0.00001 0.00003 0 0 06
4 0.06981 0.00116 0.00002 0.00004 0 0 08
6 0.08727 0.00145 0.00002 0.00005 0° 0’ 10”
6 0.10472 0.00175 0.00003 0.00006 0 0 12
7 0.12217 0.00204 0.00003 0.00007 0 0 14
8 0.13963 0.00233 0.00004 0.00008 0 017
9 0.15708 0.00262 0.00004 0.00009 0 019
10 0.17453 0.00291 0.00005
11 0.19199 0.00320 0.00005 0.0001 0° 0’ 217
12 0.20944 0.00349 0.00006 0.0002 0 0 41”7
13 0.22689 0.00378 0.00006 0.0003 0 1 02
14 0.24435 0.00407 0.00007 0.0004. 0 1 23
16 0.26180 0.00436 0.00007 0.0005 0° 1’ 43"
16 0.27925 0.00465 0.00008 0.0006 0 2 04
17 0,29671 0.00495 0.00008 0.0007 0 2 24
18 0.31416 0.00524 0.00009 0.0008 0 2 45
19 0.33161 0.00553 0.00009 0.0009 0 3 06
20 0.34907 0.00582 0.00010
21 0.36652 0.00611 0.00010 0.001 0° 03" 26"
22 0.38397 0.00640 0.00011 0.002 0 06 53
23 0.40143 0.00669 0.00011 0.003 0 10 19
24 0.41888 0.00698 0.00012 0.004 0 13 45
26 0.43633 0.00727 0.00012 0.005 0° 177 11"
26 0.45379 0.00756 0.00013 0.006 0 20 38
27 0.47124 0.00785 0.00013 0.007 0 24 04
28 0.48869 0.00814 0.00014 0.008 0 27 30
29 0.50615 0.00844 0.00014 0.009 0 30 56
!
30 0.52360 0.00873 0.00015 ‘
31 0.54105 0.00902 0.00015 0.01° 0° 34" 23"
32 0.55851 0.00931 0.00016 0.02 1 08 45
33 0.57596 0.00960 0.00016 0.03 1 43 08
34 0.59341 0.00989 0.00016 0.04 2 17 31
36 0.61087 0.01018 0.00017 0.05 2° 51% 53"
36 0.62832 0.01047 0.00017 0.06 3 26 16
37 0.64577 0.01076 0.00018 0.07 4 00 39
38 0.66323 0.01105 0.00018 0.08 4 35 01
39 0.68068 0.01134 0.00019 0.09 5 09 24
40 0.69813 0.01164 0.00019 .
41 0.71558 0.01193 0.00020 0.1 5° 43 46"
42 0.73304 0.01222 0.00020 0.2 11 27 33
43 0.75049 0.01251 0.00021 0.3 17 11 19
44 0.76794 0.01280 0.00021 0.4 22 55 6
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V. Degreces to Radians and v.v.

o
1 radian = lg:)— = 57°.29577 95131,

- 10800’
x

- 648000""
L3

= 3437.74677 07849,

radians.

1° = 0.01745

32925 19943.

_(1°)2 = 0.00030 46174 19787.
(1°)8 = 0.00000 53165 76934.

1”’ = 0.00000
(1")2 = 0.00000

48481
00000

. n degrees n minutes n seconds . n radians into
into radians | into radians | into radians degree measure
45 0.78540 0.01309 0.00022 0.5 28° 38’ 52"
46 0.80285 0.01338 0.00022 0.6 34 22 39
47 0.82030 0.01367 0.00023 0.7 40 06 25
48 0.83776 0.01396 0.00023 0.8 45 50 12
49 0.85521 0.01425 0.00024 0.9 51 33 58
60 0.87266 0.01454 0.00024
51 0.89012 0.01484 0.00025 1.0 57° 177 45
' 52 0.90757 0.01513 0.00025 2.0 114 35 30
53 0.92502 0.01542 0.00026 3.0 171 53 14
54 0.94248 0.01571 0.00026 4.0 229 10 59
65 0.95993 0.01600 0.00027 5.0 286° 28’ 44"
56 0.97738 0.01629 0.00027 6.0 343 46 29
57 0.99484 0.01658 0.00028 7.0 401 04 14
58 1.01229 0.01687 0.00028 8.0 458 21 58
59 1.02974 0.01716 0.00029 9.0 515 39 43
60 1.04720 0.01745 0.00029 10.0 572° 57’ 28"
VI. Mathematical Constants
= 3.14159 26535 89793. 5= 0.31830 98861 83791.
x2 = 9.86960 44010 89359. ;12 = 0.10132 11836 42338.
x3 = 31.00627 66802 99820. ,la = 0.03225 15344 33199.
- 1
A/x = 177245 38509 05516. Vi 0.56418 95835 47756.

= 206264'/.80624 70964.

radians.

1’ = 0.00029 08882 08666.
(17)2 = 0.00000 00846 15950.
(1')3=0.00000 00000 24614.

36811.
23504.

sin 1° = 0.01745
sin 1’ = 0.00029
sin 1’ = 0.00000

24064
08882
48481

37284.
04563.
36811.

e = Naperianbase = 1 +é + é + ... =271828
M = 0.43429 44819 03252; logion = M loge n.

1
M

= = 2,30258 50920 94046; logen =

L
M
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logio 7.

18284 59045,




VII.

Natural Logarithms and Exponential Functions

.609

X log, x ev e X log, x ex e-»
0.00 | — o0 1.000 1.000 | 2.50 | 0.916 12.18 0.082
0.05 | —2.996 1.051 0.951 | 2.55 ] 0.936 12.81 0.078
0.10 } —2.303 1.105 0.905 ] 2.60 } 0.956 13.46 0.074
0.15 | —1.897 1.162 0.861 | 2.65 ] 0.975 14.15 0.071
0.20 | —1.610 1.221 0.819 | 2.70 ] 0.993 14.88 0.067
0.25 | —1.386 1.284 0.779 | 2.75 1.012 15.64 0 064
0.30 | —1.204 1.350 0.741 2.80 1.030 16.44 0.061
0.35 | —1.050 1.419 0.705 | 2.85 1.047 17.29 0.058
0.40 | —0.916 1.492 0.670 | 2.90 1.065 18.17 0.055
0.45 | —0.799 1.568 0.638 | 2.95] 1.082 19.11 0.052
0.50 | —0.693 1.649 0.607 | 3.00 1.099 20.09 0.050
0.55 ] —0.598 1.733 0.577 1 3.05] 1.115 21,12 0.047
0.60 | —0.511 1.822 0.549 ] 3.10 1.131 22.20 0.045
0.65 | —0.431 1.916 0.522 | 3.15 | 1.147 23.34 0.043
0.70 | —0.357 2.014 0.497 | 3.20 1.163 24.53 0.041
0.75 | —0.288 2.117 0.472 1 3.25} 1.179 25.79 0.039
0.80 | —0.223 2.226 0.449 1 3.30 | 1.194 27.11 0.037
0.85 | —0.163 2.340 0.427 | 3.35 1.209 28.50 0.035
0.90 | —0.105 2.460 0.407 | 3.40 1.224 29.96 0.033
0.95 | —0.051 2.586 0.387 | 3.45| 1.238 31.50 0.032
1.00 0.000 2.718 0.368 | 3.50 { 1.253 33.12 0.030
1.05 | +0.049 2.858 0.350 ] 3.55 | 1.267 34.81 0.029
1.10 0.095 3.004 0.333 | 3.60 | 1.281 36.60 0.027
H1.15 0.140 3.158 0.317 1 3.65| 1.295 38.47 0.026
1.20 0.182 3.320° | 0.301 3.70 | 1.308 40.45 0.025
1.25 0.223 3.490 '} 0.287 | 3.75| 1.322 42.52 0.024
1.30 0.262 3.669 0.273 | 3.80 1.335 44.70 0.022
1.35 0.300 3.857 0.259 | 3.85 | 1.348 46.99 0.021
1.40 0.337 4.055 0.247 | 3.90 | 1.361 49.40 0.020
1.45 0.372 4.263 0.235 | 3.95| 1.374 51.94 0.019
1.50 0.406 4.482 0.223 | 4.00 1.386 54.60 0.018
1.55 0.438 4.711 0.212 | 4.05 ] 1.399 57.40 0.017
1.60 0.470 4.953 0.202 | 4.10 ] 1.411 60.34 0.017
1.65 0.501 5.207 0.192 | 4.15 | 1.423 63.43 0.016
1.70 0.531 5.474 0.183 | 4.20 | 1.435 66.69 0.015
1.75 0.560 5.755 0.174 | 4.25 | 1.447 70.11 0.014
1.80 0.588 6.050 0.165 | 4.30 | 1.459 73.70 0.014
1.85 0.615 6.360 0.157 | 4.35 1 1.470 77.48 0.013
1.90 0.642 6.686 0.150 | 4.40 | 1.482 81.45 0.012
1.95 0.668 7.029 0.142 | 4.45 | 1.493 85.63 0.012
2.00 0.693 7.389 0.135 | 4.50 | 1.504 90.02 0.011
2.05 0.718 7.768 0.129 | 4.55 | 1.515 94.63 0.011
2.10 0.742 8.166 0.122 | 4.60 | 1.526 99.48 0.010
2.15 0.766 8.585 0.116 | 4.65 | 1.537 104.58 0.010
2.20 0.789 9.025 0.111 | 4.70 | 1.548 | 109.95 0.009
2.25 0.811 9.488 0.105 | 4.75] 1.558 | 115.58 0 009
2.30 0.833 9.974 0.100 | 4.80 1.569 | 121.51 0.008
2.35 0.854 | 10.486 0.095 | 4.85 | 1.579 | 127.74 0.008
2.40 0.876 | 11.023 0.091 4.90 | 1.589 | 134.29 0.007
2.45 0.896 | 11.588 0.086 | 4.95 | 1.599 | 141.17 .0.007
2.50 0.916 | 12.182 0.082 | 5.00 1 148.41 0.007




VIII.

Squares, Cubes, Square Roots, Cube Roots

n n? n3 NRRY n? n3 Nn| dn
1 1 1 1 1 61 | 2601 | 132651 | 7.141] 3.708
2 4 8 1.414| 1.260] 52 2704 | 140608 | 7.211| 3.733
3 9 27 1.732] 1.442] 53 | 2809 | 148877 | 7.280| 3.756
4 16 64 2.000| 1.587] 54 2916 | 157464 | 7.348| 3.780
5 25 125 2.236] 1.710] 55 3025 | 166375 | 7.416] 3.803

'6 36 216 2.449] 1.817] 56 3136 | 175616 | 7.483| 3.826
7 49 343 2.646/-1.913] 57 3249 | 185193 | 7.550] 3.849

8 64 512 | 2.828] 2.000] 58 | 3364 | 195112 | 7.616| 3.871
9 81 729 3.000] 2.080] 59 3481 | 205379 | 7.681| 3.893

10 100 1000 3.162| 2.154] 60 3600 | 216000 | 7.746| 3.915

11 121 1331 3.317| 2.224] 61 3721 | 226981 | 7.810 3.936

12 144 1728 3.464| 2.289] 62 3844 | 238328 | 7.874] 3.958

13 169 2197 3.606| 2.351] 63 3969 | 250047 | 7.937| 3.979

14 196 2744 3.742| 2.410] 64 4096 | 262144 | 8.000| 4.000

15 225 3375 3.873| 2.466] 65 | 4225 | 274625 | 8.062| 4.021

16 256 4096 4.000 2.520] 66 4356 | 287496 | 8.124] 4.041

17 289 4913 4.123| 2.571] 67 4489 | 300763 | 8.185| 4.062

18 324 5833 4.243] 2.621] 68 4624 | 314432 | 8.246| 4.082

19 361 6859 4.359| 2.668] 69 4761 | 328509 | 8.307| 4.102

20 400 8000 4.472| 2.714] 70 4900 | 343000 | 8.367| 4.121

21 441 9261 4.583| 2.759] T1 5041 | 357911 | 8.426| 4.141

22 484 10648 4.690( 2.802] 72 5184 | 373248 | 8.485| 4.160

23 529 12167 4.796] 2.844] 73 5329 | 389017 | 8.544| 4.179

24 576 13824 4.899| 2.884] 74 5476 | 405224 | 8.602| 4.198

25 625 15625 5.000{ 2.924] 75 5625 | 421875 | 8.660| 4.217

26 676 17576 5.099] 2.962] 76 5776 | 438976 | 8.718| 4.236

27 729 19683 5.196] 3.000] 77 5929 | 456533 | 8.775| 4.254

28 784 21952 5.291] 3.037) 78 6084 | 474552 | 8.832| 4.273

29 841 24389 5.385| 3.072) 79 6241 | 493039 | 8.888| 4.291

30 900 27000 5.477( 3.107] 80 6400 | 512000 | 8.944| 4.309

31 961 29791 5.568] 3.141] 81 6561 | 531441 | 9.000| 4.327

32 1024 32768 5.657) 3.175] 82 6724 | 551368 | 9.055] 4.344

33 1089 35937 5.745| 3.208] 83 6889 | 571787 | 9.110| 4.362

34 1156 39304 5.831] 3.240] 84 7056 | 592704 | '9.165| 4.380

35 1225 42875 5.916{ 3.271} 85 7225 | 614125 | 9.220( 4.397

36 1296 46656 | 6.000] 3.302] 86 | 7396 | 636056 | 9.274| 4.414

37 1369 50653 6.083| 3.332] 87 7569 | 658503 | 9.327| 4.431

38 1444 54872 6.164| 3.362] 88 7744 | 681472 | 9.381f 4.448

39 1521 59319 6.245| 3.391] 89 7921 | 704969 | 9.434]| 4.465

40 1600 64000 6.325 3.420] 90 8100 | 729000 | 9.487| 4.481

41 1681 68921 6.403| 3.448] 91 | 8281 | 753571 | 9.539} 4.498

42 1764 74088 6.481| 3.476] 92 8464 | 778688 | 9.592| 4.514

43 1849 79507 6.557| 3.503f 93 8649 | 804357 | 9.644| 4.531

44 1936 | 85184 6.633| 3.530] 94 8836 | 830584 | 9.695| 4.547

45 2025 91125 6.708| 3.557] 95 9025 | 857375 | 9.747| 4.563

46 2116 97336 6.782| 3.583] 96 9216 | 884736 | 9.798| 4.579

47 9209 | 103823 6.856] 3.609] 97 9409 | 912673 | 9.849| 4.595

48 2304 | 110592 6.928( 3.634] 98 9604 | 941192 | 9.899| 4.610

49 2401 | 117649 7.000] 3.659] 99 9801 | 970299 | 9.950( 4.626

50. | 2500 | 125000 7.071] 3.684] 100 {10000 |1000000 |10.000{ 4.642

'n n? ns AR D n? nd v | Yn


































